# SIEMENS

# Siemens BT300 HVAC Drive

**Operator's Manual** 

**Building Technologies** 

## **Copyright Notice**

#### Notice

Document information is subject to change without notice by Siemens Industry, Inc. Companies, names, and various data used in examples are fictitious unless otherwise noted. No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express written permission of Siemens Industry, Inc.

#### Warning

This equipment generates, uses, and can radiate radio frequency energy. If equipment is not installed and used in accordance with the instructions manual, it may cause interference to radio communications. Equipment has been tested and found to comply within the limits for a Class B digital device pursuant to Part 15 of the FCC rules. These limits are designed to provide reasonable protection against such interference when operated in a commercial environment. Operation of this equipment in a residential area is likely to cause interference. Residential area equipment users are required to take whatever measures necessary to correct the interference at their own expense.

#### Service Statement

Control devices are combined to make a system. Each control device is mechanical in nature and all mechanical components must be regularly serviced to optimize their operation. Siemens Industry, Inc. branch offices and authorized distributors offer Technical Support Programs that will ensure continuous, trouble-free system performance.

For further information, contact your nearest Siemens Industry representative.

Copyright Siemens Industry, Inc.

#### **FCC Regulations**

The manual for an intentional or unintentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible could void the user's authority to operate the equipment.

For a Class B digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the text of the manual:

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

#### To the Reader

Your feedback is important to us. If you have comments about this manual, please submit them to: <u>SBT\_technical.editor.us.sbt@siemens.com</u>

#### Credits

APOGEE is a registered trademark of Siemens Industry, Inc. Other product or company names mentioned herein may be the trademarks of their respective owners. Printed in the USA.

## Table of contents

| How to Use this Manual                         | 9    |
|------------------------------------------------|------|
| Chapter 1 - User Interfaces on Siemens BT300   | 11   |
| Drive Keypad                                   | . 11 |
| Keypad Buttons                                 | . 11 |
| Keypad Display                                 | . 12 |
| Using the Keypad                               | . 13 |
| NET (Software Tool)                            | . 15 |
| Fieldbus                                       | . 16 |
| Chapter 2 - Control Board Terminal Connections | 17   |
| Analog Input Terminal Connections              | . 18 |
| Analog Input 1                                 | . 18 |
| Analog Input 2                                 | . 18 |
| Digital Input Terminal Connections             | . 19 |
| Digital Inputs 1 through 6                     | . 19 |
| Analog Output Terminal Connections             | . 19 |
| Analog Output 1                                | . 19 |
| Digital Output Terminal Connections            | . 20 |
| Chapter 3 - Start-up Information               | 21   |
| Procedure and Checklist                        | . 21 |
| Commissioning Flowchart                        | . 21 |
| Wizards                                        | . 22 |
| Startup Wizard (P1.19)                         | . 22 |
| PID Mini-Wizard (P1.17)                        | . 24 |
| Multi-Pump Wizard (P1.18)                      | . 25 |
| Fire Mode Wizard (P1.20)                       | . 25 |
| Bypass Wizard (P1.21)                          | . 26 |
| Chapter 4 - Parameters and Menu Structure      | 28   |
| Quick Setup (M1)                               | . 29 |
| Monitor Menu (M2)                              | . 30 |
| Multimonitor (M2.1)                            | . 30 |
| Basic (M2.2)                                   | . 31 |
| Timer functions monitoring (M2.3)              | . 32 |
| PID Controller 1 Monitoring (M2.4)             | . 33 |
| PID Controller 2 Monitoring (M2.5)             | . 33 |
| Multi-pump monitoring (M2.6)                   | . 33 |
| Fieldbus data monitoring (M2.8)                | . 34 |
| Temperature inputs monitoring (M2.9)           | . 35 |
| Parameters (M3)                                | . 35 |
| Motor Settings (M3.1)                          | . 35 |
|                                                |      |

|       | Basic Settings (M3.1.1)              | 36  |
|-------|--------------------------------------|-----|
|       | Motor Control Settings (M3.1.2)      | 36  |
|       | Start/Stop setup (M3.2)              |     |
|       | Start Function (P3.2.4)              | 40  |
|       | Stop Function (P3.2.5)               | 41  |
|       | I/O start/stop logic (P3.2.6)        | 41  |
|       | Control reference settings (M3.3)    | 47  |
|       | Understanding Preset Frequencies     | 50  |
|       | Ramp and Brakes Setup (M3.4)         | 51  |
|       | I/O Configuration (M3.5)             | 53  |
|       | Digital Inputs (M3.5.1)              | 53  |
|       | Analog Inputs (M3.5.2)               | 57  |
|       | Digital Outputs (M3.5.3)             | 60  |
|       | Analog Outputs (M3.5.4)              | 63  |
|       | Fieldbus Data Mapping (M3.6)         | 66  |
|       | Prohibited Frequencies (M3.7)        | 69  |
|       | Limit supervisions (M3.8)            | 70  |
|       | Protections (M3.9)                   | 72  |
|       | Automatic Reset (M3.10)              | 79  |
|       | Timer Functions (M3.11)              | 81  |
|       | Time Channels                        | 81  |
|       | Intervals                            | 81  |
|       | Timers                               | 84  |
|       | Example                              | 84  |
|       | PID Controller 1 (M3.12)             | 85  |
|       | Basic Settings (M3.12.1)             | 85  |
|       | Setpoints (M3.12.2)                  | 86  |
|       | Feedbacks (M3.12.3)                  | 88  |
|       | Feedforward (M3.12.4)                | 90  |
|       | Process Supervision (M3.12.5)        | 91  |
|       | Pressure Loss Compensation (M3.12.6) | 92  |
|       | PID Control Sequence Details         | 92  |
|       | PID Controller 2 (M3.13)             | 97  |
|       | Basic Settings (M3.13.1)             | 98  |
|       | Setpoints (M3.13.2)                  | 98  |
|       | Feedback (M3.13.3)                   | 99  |
|       | Process Supervision (M3.13.4)        | 100 |
|       | Multi-pump (M3.14)                   | 100 |
|       | Multi-Pump                           | 101 |
|       | Fire Mode (M3.16)                    | 105 |
|       | Application Settings (M3.17)         | 108 |
|       | Bypass (M3.18)                       | 108 |
| Diagn | ostics (M4)                          | 110 |

| Active faults (M4.1)                       | 110   |
|--------------------------------------------|-------|
| Reset faults (P4.2)                        | 110   |
| Fault History (M4.4)                       | 110   |
| Total Counters (M4.6)                      | 111   |
| Trip Counters (M4.7)                       | 111   |
| Software Info (M4.8)                       | 112   |
| I/O and Hardware (M5)                      | 112   |
| Basic I/O (M5.1)                           | 112   |
| Slot C (M5.2)                              | 113   |
| Slot D (M5.3)                              | 113   |
| Slot E (M5.4)                              | 114   |
| Real time clock (M5.5)                     | 114   |
| Power unit settings (M5.6)                 | 114   |
| Fan (M5.6.1)                               | 114   |
| Sine Filter (M5.6.4)                       | 115   |
| Keypad (M5.7)                              | 115   |
| RS-485 (M5.8)                              | 116   |
| Common Settings (M5.8.1)                   | 117   |
| N2 (M5.8.3)                                | 118   |
| BACnet MS/TP (M5.8.3)                      | 123   |
| P1 FLN (M5.8.3)                            | 131   |
| Modbus RTU (M5.8.3)                        | 136   |
| Ethernet (M.5.9)                           | 152   |
| Common Settings (M5.9.1)                   | 152   |
| Modbus TCP (M5.9.2)                        | 153   |
| BACnet IP (M5.9.3)                         | 158   |
| User Settings (M6)                         | 162   |
| Parameter Backup (M6.5)                    | 162   |
| Parameter Compare (M6.6)                   | 163   |
| Favorites (M7)                             | 163   |
| User Levels (M8)                           | 163   |
| Chapter 5 - Fault Tracing                  | .165  |
| Fault Displays                             | 165   |
| Fault history                              | 165   |
| Fault Codes                                | 166   |
| Chapter 6 - Technical Information          | 171   |
| Product Numbers                            | 171   |
| Power Ratings                              | 172   |
| Interpreting Serial Numbers and Date Codes | 172   |
| Technical Data                             | 173   |
| Control Board Technical Specifications     | 175   |
| Fieldbus Technical Data                    | 176   |
| Accessories and Replacement Parts          | 177   |
|                                            | . , , |

## How to Use this Manual

#### About This Manual

This manual is written for the owner and user of the BT300 HVAC Variable Speed Drive. It is designed to help you become familiar with the BT300 HVAC Variable Speed Drive and its applications.

This section covers manual organization, document conventions and symbols used in the manual, how to access help, related publications, and any other information that will help you use this manual.

#### **Document Conventions**

The following table lists conventions to help you use this manual in a quick and efficient manner.

| Convention                                                                                                                                                                                                                                                                                                                                                      | Examples                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Numbered Lists (1, 2, 3) indicate a                                                                                                                                                                                                                                                                                                                             | 1. Turn OFF power to the field panel.                                                                                                                                                                                                                                                                                                |
| procedure with sequential steps.                                                                                                                                                                                                                                                                                                                                | <ol> <li>a. Furn ON power to the field panel.</li> <li>Contact the local Siemens Industry representative.</li> </ol>                                                                                                                                                                                                                 |
| Conditions that must be completed or met<br>before beginning a task are designated with a<br>$\triangleright$ .<br>Intermediate results (what will happen<br>following the execution of a step), are<br>designated with a $\Rightarrow$ .<br>Results, which inform the user that a task was<br>completed successfully, are designated with a<br>$\Rightarrow$ . | <ul> <li>▷Composer software is properly installed.</li> <li>▷A Valid license is available.</li> <li>1. Select Start &gt; Programs &gt; Siemens &gt; GMS &gt; Composer.</li> <li>⇒The Project Management window displays.</li> <li>2. Open an existing project or create a new one.</li> <li>⇒The project window displays.</li> </ul> |
| Actions that should be performed are specified in boldface font.                                                                                                                                                                                                                                                                                                | Type <b>F</b> for Field panels.<br>Click <b>OK</b> to save changes and close the dialog box.                                                                                                                                                                                                                                         |
| Error and system messages are displayed in Courier New font.                                                                                                                                                                                                                                                                                                    | The message Report Definition successfully renamed displays in the status bar.                                                                                                                                                                                                                                                       |
| New terms appearing for the first time are italicized.                                                                                                                                                                                                                                                                                                          | The field panel continuously executes a user-defined set of instructions called the <i>control program</i> .                                                                                                                                                                                                                         |
| i                                                                                                                                                                                                                                                                                                                                                               | This symbol signifies Notes. Notes provide additional information or helpful hints.                                                                                                                                                                                                                                                  |
| Cross references to other information are indicated with an arrow and the page number, enclosed in brackets: $[\rightarrow 92]$                                                                                                                                                                                                                                 | For more information on creating flowcharts, see Flowcharts [ $\rightarrow$ 92].                                                                                                                                                                                                                                                     |
| Placeholders indicate text that can vary based<br>on your selection. Placeholders are specified<br>by italicized letters, and enclosed with brackets<br>[].                                                                                                                                                                                                     | Type <b>A C D H</b> [ <i>username</i> ] [ <i>field panel #</i> ].                                                                                                                                                                                                                                                                    |

#### Safety Symbols

The following table lists the safety symbols used in this manual to draw attention to important information.

Table 1: Warning Symbols.

| Symbol | Description                                                                                                  |
|--------|--------------------------------------------------------------------------------------------------------------|
|        | DANGER or WARNING: Dangerous voltage is present.<br>DANGER ou AVERTISSEMENT: Présence de tension dangereuse. |
|        |                                                                                                              |
|        | WARNING or CAUTION                                                                                           |
|        | AVERTISSEMENT ou ATTENTION                                                                                   |
|        | NOTE                                                                                                         |
|        | REMARQUE                                                                                                     |

The following table describes the safety notices used in this manual to draw attention to important information.

Table 2: Warning Descriptions.

| Warning Type | Description                                                                                                                                  |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| DANGER       | Serious injury, death, or severe equipment damage is imminent if a procedure or instruction is not followed as specified.                    |
|              | Le non respect d'une procédure ou instruction peut provoquer instantanément des blessures graves, voir mortelles, ou endommager l'équipement |
| WARNING      | Serious injury, death, or severe equipment damage could occur if a procedure or instruction is not followed as specified.                    |
|              | Le non respect d'une procédure ou instruction peut provoquer des blessures graves voir mortelles ou endommager l'équipement.                 |
| CAUTION      | Minor or moderate injury may occur if a procedure or instruction is not followed as specified.                                               |
|              | Le non respect d'une procédure ou instruction peut provoquer des blessures<br>mineures ou modérés.                                           |
| NOTICE       | Equipment damage or unwanted operation may occur if a procedure or instruction is not followed as specified.                                 |
|              | Le non respect d'une procédure ou instruction peut endommager l'équipement ou<br>entraîner un fonctionnement intempestif.                    |
| NOTE         | Notes provide additional information or helpful hints.                                                                                       |
|              | Les remarques fournissent des informations supplémentaires ou des conseils utiles.                                                           |

#### Getting Help

For more information about BT300 products, contact your local Siemens Industry representative.

## Chapter 1 - User Interfaces on Siemens BT300

This chapter presents the different user interfaces on Siemens BT300:

- Keypad
- Siemens NET
- Fieldbus

## Drive Keypad

The control keypad with graphical interface is the interface between the Siemens BT300 HVAC Drive and the user. With the control keypad it is possible to control the speed of a motor, to supervise the state of the equipment and to set the variable frequency driver's parameters.

### **Keypad Buttons**

The keypad features nine buttons used to configure and control the drive.



Move Backward in Menu Exit Edit Mode Reset Faults with long Press



Figure 1: Keypad Buttons.

- This button (back/reset) allows you to move backwards in the menu, backup a step when using a wizard, exit the edit mode, or reset a fault (when held for approximately one second).
- O or These buttons allow you to scroll up (or down) in the menu or increase (or decrease) a parameter value when editing.

- Sor These buttons allow you to move the cursor left (or right) when editing a parameter value.
- This button allows you to move to the next step when using a wizard, select an item in the menu, or select a setting for a parameter when editing.
- This button allows you to quickly access the Control Page and to easily change between the Hand (Keypad) or Auto mode of operation. If an Electronic Bypass is present, this button provides access to the drive-off bypass functions.
- This button allows you to start the drive in Keypad (Hand) mode of operation.
- This button allows you to stop the drive in Keypad (Hand) mode of operation. This button can also be used as an emergency stop (unless limited by the **Keypad Stop Button** [P3.2.3]).

### Keypad Display

The keypad display indicates the status of the motor and the drive and any irregularities in motor or drive functions. On the display, you can view information about the present location in the menu structure and the item displayed. See *Chapter 4* for a comprehensive view of the menu structure.



#### Figure 2: Keypad Display.

Several pieces of information are available on the display at any given moment. Five status fields are provided across the top of the display, as well as the location/parameter selected. Group information is also available. These fields are:

- Status 1: Indicates the drive's run status.
- Status 2: Indicates the drive's run direction.
- Status 3: Indicates if the drive is READY to run, NOT READY to run, in FAULT, or in BYPASS (if Electronic Bypass is enabled).
- Status 4: Indicates if the drive is in ALARM.
- Status 5: Indicates the current control place, such as I/O, FB, KEYPAD, PC, or OFF (if Electronic Bypass is enabled).
- Location: Indicates the Menu name, Sub-menu name, or parameter name that is currently selected.

- ID: Indicates the parameter ID (if applicable) for the parameter selected.
- **Tree**: Indicates the menu, sub-menu, or parameter tree structure number.

|--|

NOTE:

This field always shows standard English digits regardless of the language selected by Language Selections (P6.1).

- **Group**: Indicates the group, sub-group, or parameter name that is in the list. The highlight represents the selected item.
- Count: Indicates the count of items listed in the group or sub-group.

The data on the control keypad are arranged in menus and sub-menus. Use the UP 🕐 and DOWN 🖤 arrows to

move between the menus. Enter the group/item by pressing the <sup>OK</sup> button and return to the previous level by

pressing the Back/Reset U button.

#### Using the Keypad

This section covers the editing of parameter values, resetting of faults, accessing the control page, obtaining help related to parameters, and configuring the items for the Favorites menu.

#### **Editing Values**



#### NOTES:

Some parameters cannot be changed when the drive is in the Run state.
 Some parameters require a power cycle to implement changes.

Change the value of a parameter by using the following procedure:

- 1. Locate the parameter. See *Chapter 4* for parameter details.
- 2. Highlight the parameter and complete one of the following:

Press the

e www button to enter the parameter choice menu, which contains Edit, Help, and Add To (or

**Remove From**) Favorites. Highlight Edit and press the OV button a second time.

Press the C button to enter directly into the parameter editing mode.

3. Set the new value using the  $\mathbf{O}$  or  $\mathbf{\nabla}$  buttons.



NOTE:

You can move from digit-to-digit using the S or buttons if the value is numerical.

- 4. Confirm the change with the button or ignore the change by returning to the previous level with the button.
- 5. To exit a parameter, press the button.

#### **Resetting a Fault**

When a fault has occurred, there are four ways to reset the fault:



#### NOTE:

Remove the external control signal before resetting the fault to prevent unintentional restart of the drive.

- If fieldbus communication is in use, command the Reset Fault object.
- If a digital input is programmed for Fault Reset Close (P3.5.1.9) or Fault Reset Open (P3.5.1.10), toggle the digital input.



The default setting for Fault Reset Close (P3.5.1.9) is Digital Input 6 (DigIN SlotA.6).

Press and hold the O button on the keypad for one second.

NOTE:

• Enter the **Diagnostics (M4)** menu, enter **Reset Faults** (P4.2) parameter, and select **Reset Faults**. See *Chapter 6* for further information on fault diagnostics.

### **Control Places**

A *control place* is the source of control where the drive can be started and stopped. Every control place has its own parameter for selecting the frequency reference source. In **Hand**, the control place is the keypad (by default). The auto control place is determined by the setting **in Auto Control Place** (P1.15 or P3.2.1). The selected control place is displayed on the keypad in the area marked **Status 5** (see *Figure 2*).

### Auto Control Place

I/O A, I/O B, and fieldbus can be used as auto control places.

- I/O A and fieldbus have the lowest priority and can be chosen with Auto Control Place (P3.2.1).
- I/O B can bypass the auto control place selected using a digital input. The digital input is selected with I/O B Control Force (P3.5.1.5).
- The keypad is always used as a control place while in Hand Control.

#### Selection of Hand from Auto

- 1. From any screen in the menu structure, press the button.
- 2. Use the  $\mathbf{O}$  or  $\mathbf{O}$  buttons to highlight **Hand** and press the  $\mathbf{V}$  button.
- 3. When Activate displays, press the button to confirm.

button.

button.

### Selecting Auto from Hand

- 1. From any screen in the menu structure, press the two button.
- 2. Use the O or O buttons to highlight Auto and press the O button.
- **3.** When **Activate** displays, press the **button** to confirm.

#### Accessing the Control Page

The Control Page enables easy operation and monitoring of the most essential values. It contains the setpoint (in hertz) and four additional pieces of information (output frequency, energy counter, motor current, and motor power) that you can charge.

- 1. From any screen in the menu structure, press the more button.
- 2. Use the O or O buttons to highlight Control Page and press the
- 3. When Activate displays, press the button to confirm.

#### Help

The graphical keypad features instant help, and information displays for various items.

All parameters offer an instant help display. Select Help and press the

Text information is also available for faults, alarms and the Start-up Wizard.

#### Adding an Item to Favorites

At times, you may need to refer to certain parameter values or other items. Instead of locating them one-by-one in the menu structure, you can add them to a folder called **Favorites**, where they can easily be reached. To remove an item from **Favorites**, see Favorites (M7) [ $\rightarrow$  163] in *Chapter 4*.

## NET (Software Tool)

NET is a personal computer tool used for commissioning and maintaining the BT300 HVAC Drive. Contact your local Siemens Representative to obtain a copy of the Siemens NET Tool.

The tool includes the following features:

- Parameterization, monitoring, drive information, data logging, and so on.
- Integrated software download tool--Siemens LoadTool.
- RS-422 and Ethernet support.
- Windows 7 support.
- Multiple languages: English, Chinese, Czech, Danish, Dutch, Finnish, French, German, Italian, Polish, Portuguese, Romanian, Russian, Slovak, Spanish, Swedish, and Turkish.
- Connection can be made using the USB/RS-422 cable (Part Number BT300-CABLE) or any standard Category 5 Ethernet cable.
- USB/RS-422 drivers are automatically installed during the Siemens NET installation.
- When the connection is made, Siemens NET automatically finds the connected drive.



**NOTE:** See the software's **Help** menu for more information on using Siemens NET.

### Fieldbus

The BT300 HVAC Drive has both RS-485 communication and Ethernet protocols built into the core product; there are no special order requirements for obtaining the desired protocols. The RS-485 protocols are: APOGEE-P1, BACnet MS/TP, Johnson N2, and Modbus RTU. The Ethernet protocols are: BACnet IP and Modbus TCP.

The built-in RS-485 protocols are documented in section *RS-485* in Chapter 4. The built-in Ethernet protocols are documented in the *Ethernet* section in Chapter 4.

## **Chapter 2 - Control Board Terminal Connections**

The control board terminals are located on the control module. The control module is identical for all sizes of the BT300 HVAC Drive. It contains the keypad, terminals, and the control processor of the drive.

Connect the control wiring to the BT300 control terminals per the site-specific drawings.

|                         | Standard I/O Board (Slot A) |           |                        |                |
|-------------------------|-----------------------------|-----------|------------------------|----------------|
| •                       |                             | Terminal  | Signal                 | Default        |
|                         | 1                           | +10 V ref | Reference Output       |                |
| 110kΩ                   | 2                           | Al 1 +    | Analog Input 1 Signal  | Voltage        |
| Reletence Potentiometer | 3                           | Al 1 -    | Analog Input 1 Common  | voltage        |
| Remote Reference        | 4                           | AI 2 +    | Analog Input 2 Signal  | Current        |
| 420mA/010vdc            | 5                           | AI 2 -    | Analog Input 2 Common  | Current        |
|                         | 6                           | 24 vOut   | 24 vdc Output Voltage  |                |
|                         | 7                           | GND       | I/O Ground             |                |
| *                       | 8                           | DI 1      | Digital Input 1        | Start FWD      |
| *                       | 9                           | DI 2      | Digital Input 2        | Start REV      |
|                         | 10                          | DI 3      | Digital Input 3        | External Fault |
| ı — —                   | 11                          | COM       | Common for DI 1 – DI 6 |                |
|                         | 12                          | 24 vOut   | 24 vdc Output Voltage  |                |
| ŕ                       | 13                          | GND       | I/O Ground             |                |
| -///////                | 14                          | DI 4      | Digital Input 4        | Preset Freq 1  |
| -///////                | 15                          | DI 5      | Digital Input 5        | Preset Freq 2  |
| -///////                | 16                          | DI 6      | Digital Input 6        | Fault Reset    |
|                         | 17                          | COM       | Common for DI 1 – DI 6 |                |
|                         | 18                          | AO 1 +    | Analog Output Signal   | Output         |
|                         | 19                          | AO 1 -    | Analog Output Common   | Frequency      |
|                         | 30                          | + 24 vln  | 24 vdc Input Voltage   |                |
|                         | A                           | RS-485 -  | Field Bus Negative     |                |
|                         | B                           | RS-485 +  | Field Bus Positive     |                |

Figure 3: Slot A Terminal Connections.

| from Standard IO Board (Slot A) | Standard I/O Board (Slot B) |                      |                |         |
|---------------------------------|-----------------------------|----------------------|----------------|---------|
| from Terminal from Terminal     |                             | Terminal Signal Defa |                | Default |
| 6 or 12 13                      | 21                          | R0 1 - NC            |                |         |
|                                 | 22                          | R01-COM              | Relay Output 1 | RUN     |
|                                 | 23                          | R01-N0               |                |         |
| (CCC)                           | 24                          | RO 2 - NC            |                |         |
|                                 | 25                          | R0 2 - COM           | Relay Output 2 | FAULT   |
|                                 | 26                          | R0 2 - NO            |                |         |
|                                 | 32                          | R03-COM              | Polou Output 2 | DEADY   |
|                                 | 33                          | RO 3 - NO            | Relay Output 5 | READT   |

Figure 4: Slot B Terminal Connections.

Analog Input Terminal Connections



Figure 5: I/O-Related DIP Switches.

## **Analog Input Terminal Connections**

The BT300 HVAC Drive consists of two analog inputs built on Slot A. When using analog inputs, the DIP switches must be correctly set and the analog inputs correctly configured before enabling them.

When using an analog input for speed reference, the signal is automatically scaled for **Minimum Frequency** (P3.3.1) to **Maximum Frequency** (P3.3.2) in accordance with the signal range (for example, on a 0 to 10 Vdc signal, 0V represents Minimum Frequency and 10V represents Maximum Frequency). This scaling can be modified. See the analog input parameters listed in *Chapter 3*.

#### Analog Input 1

By default, Analog Input 1 is configured for a 0 to 10 Vdc signal source. The wiring is shown below. See Figure 5 for the location of the AI1 DIP switch. The DIP switch is set to the **U** (voltage) position at the factory. **AI1 Signal Range** (P3.5.2.3) is used for programming the signal range of the analog input. Possible settings are 0 to 10 Vdc/0 to 20 mA or 2 to 10 Vdc/4 to 20 mA.



Figure 6: Analog Input 1 Terminal Connections.

### Analog Input 2

By default, Analog Input 2 is configured for a 4 to 20 mA signal source. The wiring is shown below. See Figure 5 for the location of the Al2 DIP switch. The DIP switch is set to the I (current) position at the factory. **Al2 Signal** 

**Range** (P3.5.2.9) is used for programming the signal range of the analog input. Possible settings are 0 to 10 Vdc/0 to 20 mA or 2 to 10 Vdc/4 to 20 mA.



Figure 7: Analog Input 2 Terminal Connections.

## **Digital Input Terminal Connections**

The BT300 HVAC Drive consists of six digital inputs built on Slot A. When using digital inputs, the DIP switch must be correctly set and digital inputs correctly configured before enabling them.

#### Digital Inputs 1 through 6

See Figure 5 for the location of the DIO DIP switch. The DIP switch is set to the GND (Grounded) position at the factory.



Figure 8: Digital Input Terminal Connections.

## **Analog Output Terminal Connections**

The BT300 HVAC consists of one analog output built on Slot A. When using the analog output, the DIP switch must be correctly set and the analog output correctly configured.

### Analog Output 1

By default, Analog Output 1 is configured for a 4 to 20 mA signal. The wiring is shown below. See Figure 5 for the location of the AO1 DIP switch. The DIP switch is set to the I (current) position at the factory.



Figure 9: Analog Output 1 Terminal Connections.

## **Digital Output Terminal Connections**

The BT300 HVAC Drive consists of three digital (relay) outputs built on Slot B. See Figure 5 for the location of the DIO DIP switch. When using the digital outputs, the DIP switch must be correctly set and digital outputs correctly configured.

| 21 | Relay Output 1 Normally Closed |
|----|--------------------------------|
| 22 | Relay Output 1 Common          |
| 23 | Relay Output 1 Normally Open   |
|    |                                |
| 24 | Relay Output 2 Normally Closed |
| 25 | Relay Output 2 Common          |
| 26 | Relay Output 2 Normally Open   |
|    |                                |
| 32 | Relay Output 3 Common          |
| 33 | Relay Output 3 Normally Open   |

Figure 10: Digital Output Terminal Connections.

## Chapter 3 - Start-up Information

## Procedure and Checklist

To provide the most reliable drive available, and to avoid any extra costs related to loss or reduction of warranty coverage, a factory-certified specialist should complete the startup procedures covered in the *Startup Procedure and Checklist* (125-1006).

## **Commissioning Flowchart**



Table 3: Commissioning Flowchart.

There are several pre-checks that should be completed prior to powering up and commissioning the BT300 HVAC Drive. See *the BT300 Startup Procedure and Checklist* (125-1006) for more details.

This step should be completed on all drives at start-up to ensure a good, known starting point. Select: User Settings (M6) > Parameter Backup (M6.5) > Restore Factory Defaults (P6.5.1).

This step should be completed on all drives at start-up. This will be automatically started at the end of the Factory Reset. Select: Quick Setup > **Startup Wizard** (P1.19), if necessary.

If any other wizards are needed, select one of the following: Quick Setup > **PID Mini-Wizard** (M1.17) > Quick Setup/**Multi-Pump Wizard** (M1.20) Quick Setup > **Startup Wizard** (M1.19) > Quick Setup/Fire Mode Wizard (M1.20) Quick Setup > **Bypass Wizard** (M1.21)

Any other application-specific settings should be completed at this time.

Even if enabled during the Startup Wizard, the Auto-Reset should be configured for the site's requirements. There are several parameters to configure in this menu. Review all parameters. Select: **Parameters** (M3) > **Automatic Reset** (M3.10)

This forces the Monitor, Favorites, and User Level menus only. This prevents unauthorized parameterization through the keypad. Select: **User Levels** (M8) > **Access Code** (P8.2). Set to desired access code (such as 4521). **User Levels** (M8)/**User Level** (P8.1). Set to **Monitoring**.

To return to edit menus, select: **User Levels** (M8) > **User Level** (P8.1), and set to **Normal.** Enter the Access code when prompted.

## Wizards

Wizards are available in the **Quick Setup (M1)** menu. The wizards assist you with various start-up and commissioning functions. There are five wizards available in the BT300 HVAC Drive that prompt for essential information needed for the following:

- Start-up Wizard Easy commissioning of the drive.
- PID Mini-Wizard Proper configuration of internal PID Loop Controller 1.
- Multi-Pump Wizard Proper configuration of the Multi-pump application.
- Fire-Mode Wizard Proper configuration of the Fire-mode.
- Bypass Wizard Proper configuration of the bypass options (if connected).

### Startup Wizard (P1.19)

The Startup Wizard prompts you for the essential information needed by the drive so that it can start controlling the output as desired. Once power is connected to the BT300 HVAC Drive, the Startup Wizard should run automatically. If it is not running, it can be activated in the **Quick Setup (M1)** menu or by completing **Restore Factory Defaults** (P6.5.1)

| Step | Parameter/Question         | Settings                                                                                                                    |
|------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| 1    | Language Selections (P6.1) | Select the icon for the language you want applied to the keypad. This varies depending upon the language package installed. |
| 2    | Daylight Saving (P5.5.5)   | Select the Daylight Saving Rule<br>1 = Off<br>2 = EU<br>3 = US<br>4 = Russia                                                |
| 3    | <b>Time</b> (P5.5.2)       | Specify the current time of day in the following format: hh:mm:ss where $h = hour$ , $m = minute$ , $s = seconds$ .         |
| 4    | <b>Year</b> (P5.5.4)       | Specify the current year in the following format: yyyy where<br>yyyy = 4-digit year.                                        |
| 5    | Date (P5.5.3)              | Specify the current date in the following format: dd.mm where dd = 2-digit day, mm = 2-digit month.                         |
| 6    | Startup Wizard?            | Specify if the Startup Wizard should be activated: Yes, No                                                                  |

The following steps are required to successfully complete the Startup Wizard:

If the option **Yes** is selected for Startup Wizard (recommended), you will be prompted for the following values:

| Step | Parameter/Question                | Settings                                                                                                                                                                                                                                                                                                                                                                 |
|------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7    | Fan or Pump<br>(Application Type) | Pump<br>Automatically sets the following:<br>Accel Time 1 (P1.13) = 30<br>Decel Time 1 (P1.14) = 30<br>Start Function (P3.2.4) = Ramping<br>Stop Function (P3.2.5) = Ramping<br>Fan<br>Automatically sets the following:<br>Accel Time 1 (P1.13) = 120<br>Decel Time 1 (P1.14) = 120<br>Start Function (P3.2.4) = Flying Start<br>Stop Function (P3.2.5) = Coast to Stop |
| 8    | Motor Nom Voltg (P3.1.1.1)        | Defines nominal motor voltage from motor nameplate data.                                                                                                                                                                                                                                                                                                                 |
| 9    | Motor Nom Freq (P3.1.1.2)         | Defines nominal motor frequency from motor nameplate data.                                                                                                                                                                                                                                                                                                               |

| Step | Parameter/Question                         | Settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10   | Motor Nom Speed (P3.1.1.3)                 | Defines nominal motor speed from motor nameplate data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11   | Motor Nom Currnt (P3.1.1.4)                | Defines nominal motor current from motor nameplate data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 12   | Motor Cos Phi (P3.1.1.5)<br>(Power Factor) | Defines nominal motor Cos Phi (power factor) from motor nameplate data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 13   | Motor Nom Power (P3.1.1.6)                 | Defines nominal motor power from motor nameplate data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14   | Min Frequency (P3.3.1)                     | Minimum allowed frequency reference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 15   | Max Frequency (P3.3.2)                     | Maximum allowed frequency reference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 16   | I/O Ctrl Ref (P3.3.3)                      | Selects location of frequency setpoint source when in I/O A control. In<br>the following list of possible settings, the main setpoint is selected:<br>1 = Preset Freq 0<br>2 = Keypad Reference<br>3 = Fieldbus<br>4 = AI1<br>5 = AI2<br>6 = AI1+AI2<br>7 = PID 1 Reference<br>8 = Motor Potentiometer                                                                                                                                                                                                                                                                                                |
| 17   | Accel Time (P3.4.2)                        | Defines the time required to increase output frequency from 0 to <b>Max Frequency</b> (P3.3.1).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 18   | Decel Time (P3.4.3)                        | Defines the time required to decrease output frequency from <b>Max</b><br><b>Frequency</b> (P3.3.1) to 0 frequency.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 19   | Ctrl Place Auto (P3.2.1)                   | Start/Stop commands are given differently depending upon the control place. This parameter defines whether the Start/Stop command is controlled by digital inputs as defined in <b>Control Signal 1 A</b> (P3.5.1.1) and <b>Control Signal 2 A</b> (P3.5.1.2) in accordance with <b>the I/O A Start/Stop Logic</b> (P3.2.6) or if the Start/Stop command is controlled by the Fieldbus that is in use. Settings:<br>0 = I/O Control (control is from the physical I/O, PID control, or time channels)<br>1 = Fieldbus (control is from the configured fieldbus found in Ethernet or RS-485 settings). |
| 20   | Automatic Reset (P3.10.1)                  | Determines if the Automatic Reset feature can be used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 21   | Start Function (P3.2.4)                    | Defines the start function of the drive.<br>0 = Ramping Start<br>1 = Flying Start                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 22   | Stop Function (P3.2.5)                     | Defines the stop function of the drive.<br>0 = Coast to Stop<br>1 = Ramping Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 23   | Motor Switch (P3.1.2.2)                    | Prevents the drive from tripping when a motor switch is located<br>between the drive and motor.<br>0 = No<br>1 = Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 24   | Bypass Wizard (P1.21)                      | Enable parameter for the Bypass Wizard. This wizard can be activated during the Startup Wizard.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

The Startup Wizard is now complete.

#### PID Mini-Wizard (P1.17)

The PID Mini-Wizard is activated in the **Quick Setup (M1)** menu. This wizard will assist with configuring the drive for use with the PID Controller 1 in a "one-feedback/one-setpoint" mode. The control place will be I/O A and the default process unit is %.

The following steps are required to successfully complete the PID Mini-Wizard:

| Step | Parameter/Question                 | Settings                           |
|------|------------------------------------|------------------------------------|
| 1    | Process unit selection (P3.12.1.4) | Several selections, see P3.12.1.4. |

If a process unit other than % is selected, the following questions display. Otherwise, the wizard jumps directly to Step 5:

| Step | Parameter/Question                      | Settings                           |
|------|-----------------------------------------|------------------------------------|
| 2    | Process Unit Min (P3.12.1.5)            | Varies                             |
| 3    | Process Unit Max (P3.12.1.6)            | Varies                             |
| 4    | Process Unit Decimals (P3.12.1.7)       | Range: 0 to 4                      |
| 5    | Feedback 1 Source Selection (P3.12.3.3) | Several selections, see P3.12.3.3. |

If one of the analog input signals is selected, Step 6 displays. Otherwise, the wizard jumps directly to Step 7.

| Step | Parameter/Question                    | Settings                                   |
|------|---------------------------------------|--------------------------------------------|
| 6    | Analog Input Signal Range             | 0 to 10V/0 to 20 mA<br>2 to 10V/4 to 20 mA |
| 7    | Error Inversion (P3.12.1.8)           | Reverse Acting<br>Direct Acting            |
| 8    | Setpoint Source Selection (P3.12.2.4) | Several selections, see P3.12.3.4.         |

If one of the analog input signals is selected, Step 9 displays. If the either of the options **Keypad SP1** or **Keypad SP2** is selected, then Step 10 displays. Otherwise, the wizard jumps directly to Step 11.

| Step | Parameter/Question                               | Settings                                   |
|------|--------------------------------------------------|--------------------------------------------|
| 9    | Analog Input Signal Range                        | 0 to 10V/0 to 20 mA<br>2 to 10V/4 to 20 mA |
| 10   | Keypad SP1 (P3.12.2.1) or Keypad SP2 (P3.12.2.2) | Varies                                     |
| 11   | Sleep Function?                                  | No<br>Yes                                  |

If the option Yes is selected for Sleep Function, you will be prompted for the sleep function settings:

| Step | Parameter/Question                  | Settings |
|------|-------------------------------------|----------|
| 12   | Sleep Frequency Limit 1 (P3.13.2.7) | Varies   |
| 13   | Sleep Delay 1 (P3.12.2.8)           | Varies   |
| 14   | Wake-up Level 1 (P3.12.2.9)         | Varies   |

The PID Mini-Wizard is now complete.

#### Multi-Pump Wizard (P1.18)

The Multi-Pump Wizard is activated in the **Quick Setup (M1)** menu. This wizard assists with configuring the drive for use with PID Controller 1, and then asks the most important questions for setting up a multi-pump system. The following steps are required to successfully complete the Multi-Pump Wizard:

| Step   | Parameter/Question           | Settings            |
|--------|------------------------------|---------------------|
| 1 – 14 | Same as PID Mini-Wizard      |                     |
| 15     | Number of Motors (P3.14.1)   | 1 to 4              |
| 16     | Interlock Function (P3.14.2) | Not Used<br>Enabled |
| 17     | Auto-change (P3.14.4)        | Disabled<br>Enabled |

If the Auto-change function is enabled, the following will display. Otherwise, the wizard jumps directly to Step 21:

| Step | Parameter/Question                    | Settings            |
|------|---------------------------------------|---------------------|
| 18   | Include FC (P3.14.3)                  | Disabled<br>Enabled |
| 19   | Auto-change Interval (P3.14.5)        | 0.0 to 3000.0 h     |
| 20   | Auto-change Frequency Limit (P3.14.6) | 0.0 to 60.0 Hz      |
| 21   | Bandwidth (P3.14.8)                   | 0 to 100%           |
| 22   | Bandwidth Delay (P3.14.9)             | 0 to 3600 s         |

After this, the keypad displays the digital input and relay output configuration done by the application. It is recommended that these values are written down for future reference.

The Multi-Pump Wizard is now complete.

### Fire Mode Wizard (P1.20)

The Fire Mode feature of the drive is designed to place the drive in a mode that ignores all commands from the keypad, fieldbuses, and the personal computer tool. In addition, the drive will ignore all alarms and faults of the drive and continue providing frequency to the attached motor. This is designed for instances when the destruction of equipment is better than loss of life. The Fire Mode feature can be operated so that the PID loop is still in control of the attached motor. The Fire Mode Wizard allows for easy commissioning of the Fire Mode function.

The Fire Mode Wizard is activated in the **Quick Setup (M1)** menu. The wizard assists with configuring the drive for use with the Fire Mode feature.



#### NOTE:

The warranty is void if the Fire Mode function is activated. Test Mode can be used to test the Fire Mode function without voiding the warranty. Read important information about the password and warranty issues in Chapter 4 before you proceed.

Test Mode can be used to test the Fire Mode function without voiding the warranty.

The Fire Mode Wizard can be initiated by choosing Activate for Fire Mode Wizard (P1.20) in the Quick Setup (M1) Menu.

The following steps are required to successfully complete the Fire-Mode Wizard:

| Step | Parameter/Question                   | Settings                         |
|------|--------------------------------------|----------------------------------|
| 1    | Fire Mode Frequency Source (P3.16.5) | Several selections; see P3.16.5. |

If Fire Mode Frequency is selected, the following will display. Otherwise, the wizard jumps directly to Step 3:

| Step | Parameter/Question                                                                | Settings                                                                                                                        |
|------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| 2    | Fire Mode Frequency (P3.16.4)                                                     | Range: 0 to Maximum Frequency (P1.9)                                                                                            |
| 3    | Signal Activation?                                                                | Open Contact<br>Closed Contact                                                                                                  |
| 4    | Fire Mode Activation Open (P3.16.2)<br>Or<br>Fire Mode Activation Close (P3.16.3) | Choose the digital input to activate Fire Mode.                                                                                 |
| 5    | Fire Mode Reverse (P3.16.6)                                                       | Choose the digital input to activate the reverse command in<br>Fire Mode.<br>DigIN Slot0.1 = FORWARD<br>DigIN Slot0.2 = REVERSE |
| 6    | Fire Mode Password (P3.16.1)                                                      | Choose the password to enable the Fire Mode Function.:<br>1234 = Test Mode<br>1002 = Enable Fire Mode                           |

The Fire Mode Wizard is now complete.

### Bypass Wizard (P1.21)

The Bypass Wizard is activated in the **Quick Setup (M1)** menu. The wizard assists with configuring the drive for use with the Conventional or Electronic Bypass options. If the **Electronic Bypass** option is selected, additional features can be enabled, if desired. The standard I/O is re-mapped for use with the Electronic Bypass option. Additional parameters are available when the **Electronic Bypass** option is enabled.

The following steps are required to successfully complete the Bypass Wizard:

| Step | Parameter/Question                      | Settings                               |
|------|-----------------------------------------|----------------------------------------|
| 1    | Select the <b>Bypass</b> (P3.17.4) mode | Electronic<br>Conventional<br>Disabled |

If **Conventional** is selected, the following changes occur automatically, the wizard completes, and the message: Bypass Wizard is now complete. Press OK to continue. displays.

- Control Signal 2 A (P3.5.1.2) is set to DigIN Slot0.1 to disable the reverse command on Digital Input 2.
- Run Interlock 2 (P3.5.1.13) is set to DigIN SlotA.2 to enable the run interlock on Digital Input 2. The status of the Output Contactor (M2) is factory-wired to digital input 2.
- **Preset Freq Sel0** (P3.5.1.15) is set to **DigIN Slot0.1** to disable the Preset Frequency Selection **0** on Digital Input 4.
- **Overload** (P3.5.1.53) is set to **DigIN SlotA.5** to enable the overload on Digital Input 5. The status of the Overload is factory-wired to Digital Input 5.

If **Electronic** is selected, the following change occurs automatically:

**Overload** (P3.5.1.53) is set to **DigIN SlotA.5** to enable the overload on Digital Input 5. The status of the Overload is factory-wired to Digital Input 5.

The wizard continues with the following steps:

| Step | Parameter/Question            | Settings                                                                                                                 |
|------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| 2    | Bypass Delay (P3.18.1) Time   | Defines the amount of time between the unit being placed into Bypass mode and the M1 contactor closing. Range: 1 to 30 s |
| 3    | Essential Services* (P3.18.5) | Enabled<br>Disabled                                                                                                      |

If Enabled is selected for Essential Services, Step 4 displays. Otherwise, the wizard jumps directly to Step 5.

| Step | Parameter/Question                        | Settings            |
|------|-------------------------------------------|---------------------|
| 4    | Essential Services Activation (P3.5.1.52) | DigIN SlotA.6       |
| 5    | Remote Bypass* (P3.18.6)                  | Enabled<br>Disabled |

If Enabled is selected for Remote Bypass, Step 6 displays. Otherwise, the wizard jumps directly to Step 7.

| Step | Parameter/Question        | Settings                     |
|------|---------------------------|------------------------------|
| 6    | Command Source (P3.5.1.1) | Fieldbus CTRL<br>I/O Control |
| 7    | Interlock* (P3.2.11)      | Enabled<br>Disabled          |

If Enabled is selected for Interlock, Step 8 displays. Otherwise, the wizard jumps directly to Step 9.

| Step | Parameter/Question        | Settings            |
|------|---------------------------|---------------------|
| 8    | Interlock Delay (P3.2.12) | Range: 0 to 120 s   |
| 9    | Auto Bypass* (P3.18.2)    | Enabled<br>Disabled |

If Enabled is selected for Auto Bypass, Step 10 displays. Otherwise, the wizard jumps directly to Step 11.

| Step | Parameter/Question          | Settings                                                                                                                                                                             |
|------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10   | Auto Bypass Delay (P3.18.4) | Range: 0 to 30 s                                                                                                                                                                     |
| 11   | Fault Selection (P3.18.3)   | Select faults to enable auto Bypass:<br>Any Fault<br>Undervoltage<br>Overvoltage<br>Overcurrent<br>AI Low<br>Unit Temperature<br>Motor Overtemp<br>External Fault<br>Underload Fault |

\* Feature of the Electronic Bypass Option. For more details, see *BT300 Bypass Operator's Manual* (DPD01391) The Bypass Wizard is now complete. The following message displays: Bypass Wizard is now complete. Press OK to continue.

If **Disabled** is selected, no changes occur and the wizard completes The following message displays: Bypass Wizard is now complete. Press OK to continue.

For more information on the bypass options, see the *BT300 Variable Frequency Drive Bypass Installation Instructions* (DPD01375) and the *BT300 Variable Frequency Drive Bypass Operator's Manual* (DPD01391).

## Chapter 4 - Parameters and Menu Structure

All information and parameters are organized in a menu structure:

| Quick Setup (M1)            | P1.17 PID Mini-Wizard     |   | Diagnostics (M4)                                                    | M4.1 Active Faults             |  |  |
|-----------------------------|---------------------------|---|---------------------------------------------------------------------|--------------------------------|--|--|
| All basic parameters        | P1.18 Multi-Pump Wizard   |   | Diagnostics information such                                        | M4.2 Reset Faults              |  |  |
| required to quickly setup   | P1.19 Startup Wizard      |   | as active faults, fault history                                     | M4.3 Fault History             |  |  |
| operation and all available | P1.20 Fire Mode Wizard    |   | and counters.                                                       | M4.4 Total Counters            |  |  |
| wizards.                    | P1.21 Bypass Wizard       |   |                                                                     | M4.5 Trip Counters             |  |  |
| Monitor (M2)                | M2.1 Multimonitor         |   |                                                                     | M4.6 Software Info             |  |  |
| Access to the Multi-        | M2.2 Basic                |   | I/O and Hardware (M5)                                               | M5.1 Basic IO                  |  |  |
| monitor display and         | M2.3 Timer Functions      |   | Parameters for status of I/O,                                       | M5.2 Slot C                    |  |  |
| monitoring.                 | M2.4 PID Controller 1     |   | real time clock, keypad, and                                        | M5.3 Slot D                    |  |  |
|                             | M2.5 PID Controller 2     |   | neiubus connguration.                                               | M5.4 Slot E                    |  |  |
|                             | M2.6 Multi-Pump           |   |                                                                     | M5.5 Real Time Clock           |  |  |
|                             | M2.8 Fieldbus Data        |   |                                                                     | M5.6 Power Unit Settings       |  |  |
|                             | M2.9 Temp. Inputs         |   |                                                                     | M5.7 Keypad                    |  |  |
| Parameters (M3)             | M3.1 Motor Settings       |   |                                                                     | M5.8 RS-485                    |  |  |
| Parameters used for         | M3.2 Start/Stop Setup     |   |                                                                     | M5.8.1 Common Settings         |  |  |
| basic and advanced          | M3.3 References           |   |                                                                     | M5.8.3 BACnet MSTP1            |  |  |
| requirements.               | M3.4 Ramps and Brakes     |   |                                                                     | M5.8.3 Modbus RTU <sup>1</sup> |  |  |
|                             | M3.5 I/O Config           |   |                                                                     | M5.8.3 N2 <sup>1</sup>         |  |  |
|                             | M3.5.1 Digital Inputs     |   |                                                                     | M5.8.3 P1 <sup>1</sup>         |  |  |
|                             | M3.5.2 Analog Inputs      |   |                                                                     | M5.9 Ethernet                  |  |  |
|                             | M3.5.3 Digital Outputs    |   |                                                                     | M5.9.1 Common Settings         |  |  |
|                             | M3.5.4 Analog Outputs     |   |                                                                     | M5.9.2 Modbus TCP              |  |  |
|                             | M3.6 Fieldbus DataMap     |   |                                                                     | M5.9.3 BACnet IP               |  |  |
|                             | M3.7 Prohibit Freq        |   | User Settings (M6)                                                  | M6.1 Language Selection        |  |  |
|                             | M3.8 Limit Superv         |   | User information such as keypad language selection,                 | M6.5 Parameter Backup          |  |  |
|                             | M3.9 Protections          |   | parameter backup/restore, and drive name                            | M6.6 Parameter Compare         |  |  |
|                             | M3.10 Automatic Reset     |   | unve name.                                                          | M6.7 Drive Name                |  |  |
|                             | M3.11 Timer Function      |   | Favorites (M7)                                                      |                                |  |  |
|                             | M3.12 PID Controller 1    |   | List of user-defined parameter                                      |                                |  |  |
|                             | M3.13 PID Controller 2    |   | list.                                                               |                                |  |  |
|                             | M3.14 Multi-Pump          |   | User Levels (M8)                                                    | P8.1 User Level                |  |  |
|                             | M3.16 Fire Mode           | [ | Restricts the visibility of                                         | P8.2 Access Code               |  |  |
|                             | M3.17 Appl. Setttings     |   | parameters                                                          |                                |  |  |
|                             | M3.18 Bypass <sup>2</sup> |   | <sup>1</sup> Displayed based on value of <b>Protocol</b> (P5.8.1.1) |                                |  |  |
|                             |                           |   | <sup>2</sup> Displayed based on value of <b>Bypass</b> (P3.17.4)    |                                |  |  |

## Quick Setup (M1)

The Quick Setup parameter group is a collection of parameters that are the most commonly used during installation and commissioning. They are collected in the first parameter group so that they can be found quickly and easily. However, they can be also be reached and edited in the actual parameter groups. Changing a parameter value in the Quick Setup group also changes the value of this parameter in its actual group.

The Quick Setup parameters are presented in the following table:

| Table 4: Quick Setup Parameters. |
|----------------------------------|
|----------------------------------|

| Structure | Parameter        | Unit | ID  | Description                                                                                                                                                                                                                                                                                                                                      |
|-----------|------------------|------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P1.1      | Motor Nom Voltg  | V    | 110 | Defines nominal motor voltage from motor nameplate data.<br>Also see <i>Menu Structure P3.1.1.1.</i>                                                                                                                                                                                                                                             |
| P1.2      | Motor Nom Freq   | Hz   | 111 | Defines nominal motor frequency from motor nameplate data.<br>Also see <i>Menu Structure P3.1.1.2.</i>                                                                                                                                                                                                                                           |
| P1.3      | Motor Nom Speed  | rpm  | 112 | Defines nominal motor speed from motor nameplate data.<br>Also see <i>Menu Structure P3.1.1.3.</i>                                                                                                                                                                                                                                               |
| P1.4      | Motor Nom Currnt | A    | 113 | Defines nominal motor current from motor nameplate data.<br>Also see <i>Menu Structure P3.1.1.4</i> .                                                                                                                                                                                                                                            |
| P1.5      | Motor Cos Phi    |      | 120 | Defines nominal motor Cos Phi (power factor) from motor nameplate data.<br>Also see <i>Menu Structure P3.1.1.5.</i>                                                                                                                                                                                                                              |
| P1.6      | Motor Nom Power  | hp   | 116 | Defines nominal motor power from motor nameplate data.<br>Also see <i>Menu Structure P3.1.1.6.</i>                                                                                                                                                                                                                                               |
| P1.7      | Current Limit    | A    | 107 | Defines maximum current limit for motor. Suggested to use <b>Motor Nominal Current</b> (P1.4) multiplied by motor service factor from motor nameplate data. Also see <i>Menu Structure P3.1.1.7.</i>                                                                                                                                             |
| P1.8      | Min Frequency    | Hz   | 101 | Sets minimum motor frequency at which motor will run irrespective of frequency setpoint.<br>Also see <i>Menu Structure P3.3.1.</i>                                                                                                                                                                                                               |
| P1.9      | Max Frequency    | Hz   | 102 | Sets maximum motor frequency at which motor will run irrespective of frequency setpoint.<br>Also see <i>Menu Structure P3.3.2.</i>                                                                                                                                                                                                               |
| P1.10     | I/O A Ctrl Ref   |      | 117 | Selects location of frequency setpoint source when in I/O A control. In the<br>following list of possible settings, the main setpoint is selected:<br>1= Preset Freq 0<br>2 = Keypad Reference<br>3 = Fieldbus<br>4 = Al1<br>5 = Al2<br>6 = Al1+Al2<br>7 = PID 1 Reference<br>8 = Motor Potentiometer<br>Also see <i>Menu Structure P3.3.3</i> . |
| P1.11     | Preset Freq 1    | Hz   | 105 | Used according to state of digital input defined for <b>Preset Frequency</b><br><b>Selection 1</b> (P3.5.1.16). Decoding mode chosen with <b>Preset Frequency Mode</b><br>(P3.3.10). Also see <i>Menu Structure P3.3.12</i> .                                                                                                                    |
| P1.12     | Preset Freq 2    | Hz   | 106 | Used according to state of digital inputs <b>Preset Frequency Selection 2</b> (P3.5.1.17). Decoding mode chosen with <b>Preset Frequency Mode</b> (P3.3.10). Also see <i>Menu Structure P3.3.13</i> .                                                                                                                                            |
| P1.13     | Accel Time 1     | S    | 103 | Time allowed for motor to accelerate from a standstill (0) up to <b>Maximum</b><br><b>Frequency</b> (P1.9).<br>This parameter can also be found in Menu Structure P3.4.2                                                                                                                                                                         |
| P1.14     | Decel Time 1     | s    | 104 | Time allowed for motor to decelerate from <b>Maximum Frequency</b> (P1.9) to a standstill (0). Also see <i>Menu Structure P3.4.3</i> .                                                                                                                                                                                                           |

Monitor Menu (M2)

| Structure | Parameter        | Unit | ID   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------|------------------|------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P1.15     | Ctrl. Place Auto |      | 172  | Start/Stop commands are given differently depending upon the control place.<br>This parameter defines whether the Start/Stop command is controlled by<br>digital inputs as defined in <b>Control Signal 1 A</b> (P3.5.1.1) and <b>Control Signal 2</b><br><b>A</b> (P3.5.1.2) in accordance with the I/O A Start/Stop Logic (P3.2.6) or if the<br>Start/Stop command is controlled by the Fieldbus that is in use.<br>Settings:<br>0 = I/O Control (control is from the physical I/O, PID control, or time channels)<br>1 = Fieldbus (control is from the configured fieldbus found in Ethernet or RS-<br>485 settings)<br>Also see <i>Menu Structure P3.2.1</i> . |
| P1.16     | Automatic Reset  |      | 731  | Enable parameter for the Automatic Reset function of the drive. This feature is configured in the <b>Parameters (M3) Automatic Reset (M3.10)</b> menu. Also see <i>Menu Structure P3.10.1</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| P1.17     | PID Mini-Wizard  |      | 1803 | Enable parameter for the PID Mini-Wizard. This wizard assists with the configuration of the PID Controller 1 using a single feedback and single setpoint.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| P1.18     | MultiPump Wizard |      |      | Enable parameter for the Multi-Pump Wizard. This wizard assists with the configuration of the Multi-Pump function of the drive. The PID Mini Wizard will precede this wizard.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| P1.19     | Startup Wizard   |      | 1171 | Enable parameter for the Startup Wizard. This wizard assist with the essential information required for drive operation.<br>This wizard is automatically enabled after <b>Restore Factory Defaults</b> (P6.5.1) is activated.                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| P1.20     | Fire Mode Wizard |      | 1672 | Enable parameter for the Fire Mode Wizard.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| P1.21     | Bypass Wizard    |      | 1823 | Enable parameter for the Bypass Wizard. This wizard can be activated during the Startup Wizard.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

## Monitor Menu (M2)

The Siemens BT300 HVAC Drive allows you to monitor actual values, parameters, and signals as well as status and measurements. Some of the monitored values are customizable.

| Menu and Parameter Group | Description                                                 |
|--------------------------|-------------------------------------------------------------|
| Multimonitor (M2.1)      | Display of 9 monitored values.                              |
| Basic (M2.2)             | Display of basic drive monitoring parameters.               |
| Timer Functions (M2.3)   | Display of timer function specific monitoring parameters.   |
| PID Controller 1 (M2.4)  | Display of PID Controller 1 specific monitoring parameters. |
| PID Controller 2 (M2.5)  | Display of PID Controller 2 specific monitoring parameters. |
| Multi-Pump (M2.6)        | Display of Multi-Pump specific monitoring parameters.       |
| Fieldbus Data (M2.8)     | Display of Mapped Fieldbus Data monitoring parameters.      |
| Temp. Inputs (M2.9)      | Display of connected temperature inputs.                    |

Table 5: Monitor Menu.

## Multimonitor (M2.1)

On the Multi-Monitor page, you can collect nine values to monitor. The display fields can be changed by selecting

the display field to be changed with the **O** and **O** arrow buttons, and then pressing the **O** button. Scroll

through the list of items until the desired value to be monitored is highlighted. Items with a checkmark are already

actively displayed in the multimonitor display. With an item chosen, press the <sup>OK</sup> button again to add to the display field.

### Basic (M2.2)

The basic monitoring values are the actual values of selected parameters and signals as well as statuses and measurements. Different applications may have different statuses and different numbers of monitoring values.



**NOTE:** Only Standard I/O board statuses are available in the Monitor menu. Statuses for all I/O board signals can be found as raw data in the I/O and Hardware (M5) menu.

The basic monitoring values are presented in the following table:

Table 6: Monitoring Menu Items.

| Structure | Parameter        | Unit | ID   | Description                                                                                                                                                                                                               |
|-----------|------------------|------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| M2.2.1    | Output Frequency | Hz   | 1    | Displays the actual output frequency.                                                                                                                                                                                     |
| M2.2.2    | FreqReference    | Hz   | 25   | Displays the actual frequency reference (setpoint).                                                                                                                                                                       |
| M2.2.3    | Motor Speed      | rpm  | 2    | Displays the actual motor speed.                                                                                                                                                                                          |
| M2.2.4    | Motor Current    | А    | 3    | Displays the actual motor current.                                                                                                                                                                                        |
| M2.2.5    | Motor Torque     | %    | 4    | Displays the calculated motor torque.                                                                                                                                                                                     |
| M2.2.7    | Motor Power      | %    | 5    | Total power consumption of the drive in %                                                                                                                                                                                 |
| M2.2.8    | Motor Power      | hp   | 73   | Total power consumption of the drive in kW or hp                                                                                                                                                                          |
| M2.2.9    | Motor Voltage    | V    | 6    | Voltage feed to the motor                                                                                                                                                                                                 |
| M2.2.10   | DC-Link Voltage  | V    | 7    | Voltage available on the DC Link                                                                                                                                                                                          |
| M2.2.11   | Unit Temperature | °F   | 8    | Heat sink temperature                                                                                                                                                                                                     |
| M2.2.12   | MotorTemperature | %    | 9    | Calculated motor temperature                                                                                                                                                                                              |
| M2.2.13   | Analog Input 1   | %    | 59   | Signal of used range in %                                                                                                                                                                                                 |
| M2.2.14   | Analog Input 2   | %    | 60   | Signal of used range in %                                                                                                                                                                                                 |
| M2.2.15   | Analog Output 1  | %    | 81   | Signal of used range in %                                                                                                                                                                                                 |
| M2.2.16   | Motor PreHeat    |      | 1228 | 0 = Off<br>1 = Heating (feeding DC current)                                                                                                                                                                               |
| M2.2.17   | DriveStatusWord  |      | 43   | Bit coded status of the drive<br>B1 = Ready<br>B2 = Run<br>B3 = Fault<br>B6 = Run Enable<br>B7 = Alarm Active<br>B10 = DC Current (in stop)<br>B11 = DC Brake Active<br>B12 = Run Request<br>B13 = Motor Regulator Active |
| M2.2.18   | Last ActiveFault |      | 37   | Fault code of last activated fault that has not been reset. See Fault Codes.                                                                                                                                              |

Monitor Menu (M2)

| Structure | Parameter           | Unit | ID   | Description                                                                                                                                                                                                                                                                                            |
|-----------|---------------------|------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| M2.2.19   | FireMode Status     |      | 1597 | 0 = Disabled<br>1 = Enabled<br>2 = Activated (Enabled & DI)<br>3 = Test Mode                                                                                                                                                                                                                           |
| M2.2.20   | DIN StatusWord1     |      | 56   | B0 = SlotA.1B5 = SlotA.6<br>B6 = SlotB.1B11 = SlotB.6<br>B12 = SlotC.1B15 = SlotC.4                                                                                                                                                                                                                    |
| M2.2.21   | DIN StatusWord2     |      | 57   | B0 = SlotC.5B1 = SlotC.6<br>B2 = SlotD.1B7 = SlotD.6<br>B8 = SlotE.1B13 = SlotE.4                                                                                                                                                                                                                      |
| M2.2.22   | MotCurrent1Deci.    |      | 45   | Motor current monitor value with fixed number of decimals and less filtering. For example, can be used for fieldbus purpose to always get the right value regardless of frame size, or monitoring when less filtering time is needed for motor current.                                                |
| M2.2.23   | Appl.StatusWord1    |      | 89   | Bit coded application status word 1<br>B0 = Interlock1<br>B1 = Interlock2<br>B5 = I/O A Control Active<br>B6 = I/O B Control Active<br>B7 = Fieldbus Control Active<br>B8 = Hand Control Active<br>B9 = PC Control Active<br>B10 = Preset Freq Active<br>B12 = FireMode Active<br>B13 = PreHeat Active |
| M2.2.24   | Appl.StatusWord2    |      | 90   | Bit coded application status word 2<br>B0 = Acc/Dec Prohibited<br>B1 = MotorSwitch Active                                                                                                                                                                                                              |
| M2.2.25   | kWhTripCounter Low  |      | 1054 | Energy counter with kWh output (low word)                                                                                                                                                                                                                                                              |
| M2.2.26   | kWhTripCounter High |      | 1067 | # of times energy counter has spun around (high word)                                                                                                                                                                                                                                                  |
| M2.2.27   | Appl.StatusWord3    |      | 1851 | Bit coded application status word 3                                                                                                                                                                                                                                                                    |
| M2.2.28   | Safety StatusWord   |      | 1852 | Bit coded Safety Status Word                                                                                                                                                                                                                                                                           |
| M2.2.29   | Bypass Runtime      | h    | 1850 | Bypass Running Hours                                                                                                                                                                                                                                                                                   |

### Timer functions monitoring (M2.3)

The timer functions monitoring values and the actual values of the timer functions and the real time clock. See *Timer Functions (M3.11).* 

| Structure | Parameter        | Unit | ID   | Description                       |
|-----------|------------------|------|------|-----------------------------------|
| M2.3.1    | TC 1, TC 2, TC 3 |      | 1441 | Status of the three time channels |
| M2.3.2    | Interval 1       |      | 1442 | Status of timer interval          |
| M2.3.3    | Interval 2       |      | 1443 | Status of timer interval          |
| M2.3.4    | Interval 3       |      | 1444 | Status of timer interval          |
| M2.3.5    | Interval 4       |      | 1445 | Status of timer interval          |
| M2.3.6    | Interval 5       |      | 1446 | Status of timer interval          |

Table 7: Monitoring of Timer Functions.

Monitor Menu (M2)

| Structure | Parameter       | Unit | ID   | Description                         |  |  |
|-----------|-----------------|------|------|-------------------------------------|--|--|
| M2.3.7    | Timer 1         | s    | 1447 | Remaining time on timer (if active) |  |  |
| M2.3.8    | Timer 2         | s    | 1448 | Remaining time on timer (if active) |  |  |
| M2.3.9    | Timer 3         | s    | 1449 | Remaining time on timer (if active) |  |  |
| M2.3.10   | Real Time Clock |      | 1450 | Current Time of Day                 |  |  |

#### PID Controller 1 Monitoring (M2.4)

The PID Controller 1 monitoring values are the actual values of the first PID controller, which is used to control the speed of the motor that is physically connected to the drive's output. See *PID Controller 1 (M3.12)*. The PID Controller 1 monitoring values are presented in the following table:

Table 8: PID1-Controller Value Monitoring.

| Structure | Parameter     | Unit   | ID | Description                                                      |  |  |  |
|-----------|---------------|--------|----|------------------------------------------------------------------|--|--|--|
| M2.4.1    | PID1 Setpoint | Varies | 20 | Setpoint for the PID controller for the attached motor           |  |  |  |
| M2.4.2    | PID1 Feedback | Varies | 21 | Feedback for the PID controller for the attached motor           |  |  |  |
| M2.4.3    | PID1 Error    | Varies | 22 | Error value of the PID controller for the attached motor         |  |  |  |
| M2.4.4    | PID1 Output   | %      | 23 | Output of the PID controller for the attached motor              |  |  |  |
| M2.4.5    | PID1 Status   |        | 24 | 0 = Stopped<br>1 = Running<br>3 = Sleep Mode<br>4 = In dead band |  |  |  |

#### PID Controller 2 Monitoring (M2.5)

The PID Controller 2 monitoring values are the actual values of the second PID controller, which is used for external devices that require PID loop control. See *PID Controller 2 (M3.13)*.

The PID Controller 2 monitoring values are presented in the following table:

| Structure | Parameter     | Unit   | ID | Description                                                    |  |  |  |
|-----------|---------------|--------|----|----------------------------------------------------------------|--|--|--|
| M2.5.1    | PID2 Setpoint | Varies | 83 | Setpoint for the PID controller for the external device (AO)   |  |  |  |
| M2.5.2    | PID2 Feedback | Varies | 84 | Feedback for the PID controller for the external device (AO)   |  |  |  |
| M2.5.3    | PID2 Error    | Varies | 85 | Error value of the PID controller for the external device (AO) |  |  |  |
| M2.5.4    | PID2 Output   | %      | 86 | Output of the PID controller for the external device (AO)      |  |  |  |
| M2.5.5    | PID2 Status   |        | 87 | 0 = Stopped<br>1 = Running<br>4 = In dead band                 |  |  |  |

Table 9: PID2-Controller Value Monitoring.

#### Multi-pump monitoring (M2.6)

The Multi-Pump monitoring values are the actual values related to the use of several drives/motors. See *Multi-Pump* (M3.14).

The Multi-Pump monitoring values are presented in the following table:

Table 10: Multi-Pump Monitoring.

| Structure | Parameter      | Unit | ID   | Description                                                                                                                                                                                                                                                       |  |  |
|-----------|----------------|------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| M2.6.1    | Motors Running |      | 30   | The number of motors running at the moment when Multi-Pump functionality is used.                                                                                                                                                                                 |  |  |
| M2.6.2    | Autochange     |      | 1114 | If an autochange is requested, <i>requested</i> means that the autochange time has elapsed<br>and the drive is waiting until the rest of the autochange criteria is fulfilled. For example,<br>output frequency of controlled drive and number of running motors. |  |  |

#### Fieldbus data monitoring (M2.8)

The Fieldbus Data monitoring values are shown for debugging purposes. See *Fieldbus Data Mapping (M3.6).* The Fieldbus Data monitoring values are presented in the following table:

| Structure | Parameter          | Unit | ID  | Description                                                                                                                                                                                                                            |  |  |  |
|-----------|--------------------|------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| M2.8.1    | FB Control Word    |      | 874 | Fieldbus control word used by application in bypass mode/format. Depending on the fieldbus type or profile the data might be modified before sent to the application.                                                                  |  |  |  |
| M2.8.2    | FB Speed Reference | Hz   | 875 | Speed reference scaled between minimum and maximum frequency at the moment it was received to the application. Minimum and maximum frequency might have been changed after the reference was received without affecting the reference. |  |  |  |
| M2.8.3    | FB Data In 1       |      | 876 | Raw value of process data in 32-bit signed format.                                                                                                                                                                                     |  |  |  |
| M2.8.4    | FB Data In 2       |      | 877 | Raw value of process data in 32-bit signed format.                                                                                                                                                                                     |  |  |  |
| M2.8.5    | FB Data In 3       |      | 878 | Raw value of process data in 32-bit signed format.                                                                                                                                                                                     |  |  |  |
| M2.8.6    | FB Data In 4       |      | 879 | Raw value of process data in 32-bit signed format.                                                                                                                                                                                     |  |  |  |
| M2.8.7    | FB Data In 5       |      | 880 | Raw value of process data in 32-bit signed format.                                                                                                                                                                                     |  |  |  |
| M2.8.8    | FB Data In 6       |      | 881 | Raw value of process data in 32-bit signed format.                                                                                                                                                                                     |  |  |  |
| M2.8.9    | FB Data In 7       |      | 882 | Raw value of process data in 32-bit signed format.                                                                                                                                                                                     |  |  |  |
| M2.8.10   | FB Data In 8       |      | 883 | Raw value of process data in 32-bit signed format.                                                                                                                                                                                     |  |  |  |
| M2.8.11   | FB Status Word     |      | 864 | Fieldbus status word sent by application in bypass mode/format. Depending on the fieldbus type or profile the data might be modified before sent to the fieldbus.                                                                      |  |  |  |
| M2.8.12   | FB Speed Actual    | %    | 865 | Actual speed in %. 0 and 100% corresponds to minimum and maximum frequency respectively. This is continuously updated depending on the momentary min and max frequency and output frequency.                                           |  |  |  |
| M2.8.13   | FB Data Out 1      |      | 866 | Raw value of process data out 32-bit signed format.                                                                                                                                                                                    |  |  |  |
| M2.8.14   | FB Data Out 2      |      | 867 | Raw value of process data out 32-bit signed format.                                                                                                                                                                                    |  |  |  |
| M2.8.15   | FB Data Out 3      |      | 868 | Raw value of process data out 32-bit signed format.                                                                                                                                                                                    |  |  |  |
| M2.8.16   | FB Data Out 4      |      | 869 | Raw value of process data out 32-bit signed format.                                                                                                                                                                                    |  |  |  |
| M2.8.17   | FB Data Out 5      |      | 870 | Raw value of process data out 32-bit signed format.                                                                                                                                                                                    |  |  |  |
| M2.8.18   | FB Data Out 6      |      | 871 | Raw value of process data out 32-bit signed format.                                                                                                                                                                                    |  |  |  |
| M2.8.19   | FB Data Out 7      |      | 872 | Raw value of process data out 32-bit signed format.                                                                                                                                                                                    |  |  |  |
| M2.8.20   | FB Data Out 8      |      | 873 | Raw value of process data out 32-bit signed format.                                                                                                                                                                                    |  |  |  |

Table 11: Fieldbus Data Monitoring.

#### Temperature inputs monitoring (M2.9)

The Temperature Inputs monitoring values are the actual values of the temperature inputs connected using slot C, D, or E. If no sensor is available, the monitoring values do not exist.

The Temperature Inputs monitoring values are presented in the following table:

Table 12: Temperature Inputs Monitoring.

| Structure | Parameter    | Unit | ID | Description                            |  |  |
|-----------|--------------|------|----|----------------------------------------|--|--|
| M2.9.1    | Temp Input 1 | °F   | 50 | Measured value of temperature input 1. |  |  |
| M2.9.2    | Temp Input 2 | °F   | 51 | Measured value of temperature input 2. |  |  |
| M2.9.3    | Temp Input 3 | °F   | 52 | Measured value of temperature input 3. |  |  |

## Parameters (M3)

The Parameters group is a collection of parameters that are used during installation and commissioning. The parameters group is used for configuration of the application in better detail than the Startup Wizard alone.

The parameters menu and application contain the following parameter groups:

Table 13: Parameter Groups.

| Menu and Parameter group | Description                                                                  |
|--------------------------|------------------------------------------------------------------------------|
| Motor Settings (M3.1)    | Basic and advanced motor settings.                                           |
| Start/Stop Setup (M3.2)  | Start and stop functions.                                                    |
| References (M3.3)        | Frequency references setup.                                                  |
| Ramps and Brakes (M3.4)  | Acceleration and deceleration setup.                                         |
| I/O Config (M3.5)        | Input/Output (I/O) configuration.                                            |
| Fieldbus DataMap (M3.6)  | Fieldbus data out setup.                                                     |
| Prohibited Freq (3.7)    | Prohibited frequencies setup.                                                |
| Limit Superv (M3.8)      | Programmable limit controllers.                                              |
| Protections (M3.9)       | Protections configuration.                                                   |
| Automatic Reset (M3.10)  | Automatic reset after fault setup.                                           |
| Timer Functions (M3.11)  | Setup of time of day operation based on real time clock.                     |
| PID Controller 1 (M3.12) | Configuration of PID Controller 1. Used for motor control or external usage. |
| PID Controller 2 (M3.13) | Configuration of PID Controller 2. Used for external usage.                  |
| Multi-Pump (M3.14)       | Configuration for multi-pump usage.                                          |
| Fire Mode (M3.16)        | Configuration for fire mode usage.                                           |
| Appl. Settings (M3.17)   | Parameters for regional settings and application.                            |
| ByPass (M3.18)           | Parameters for Electronic Bypass option (when used).                         |

### Motor Settings (M3.1)

This structure contains basic (such as motor nameplate data) and advanced (such as pre-heat function) motor settings.

## Basic Settings (M3.1.1)

Table 14: Basic Motor Settings.

| Structure | Parameter        | Unit | Min    | Max    | Default | ID  | Description                                                                                                                                                                                                                 |
|-----------|------------------|------|--------|--------|---------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P3.1.1.1  | Motor Nom Voltg  | V    | Varies | Varies | Varies  | 110 | Defines nominal motor voltage from<br>motor nameplate data. <i>Also see</i><br><i>Menu Structure P1.1.</i>                                                                                                                  |
| P3.1.1.2  | Motor Nom Freq   | Hz   | 8      | 320    | 60      | 111 | Defines nominal motor frequency from motor nameplate data. Also see <i>Menu Structure P1.2.</i>                                                                                                                             |
| P3.1.1.3  | Motor Nom Speed  | rpm  | 24     | 19200  | Varies  | 112 | Defines nominal motor speed from<br>motor nameplate data. Also see<br><i>Menu Structure P1.3.</i>                                                                                                                           |
| P3.1.1.4  | Motor Nom Currnt | A    | Varies | Varies | Varies  | 113 | Defines nominal motor current from motor nameplate data. Also see <i>Menu Structure P1.4.</i>                                                                                                                               |
| P3.1.1.5  | Motor Cos Phi    |      | 0.3    | 1      | Varies  | 120 | Defines nominal motor Cos Phi<br>(power factor) from motor<br>nameplate data. Also see <i>Menu</i><br><i>Structure P1.5.</i>                                                                                                |
| P3.1.1.6  | Motor Nom Power  | hp   | Varies | Varies | Varies  | 116 | Defines nominal motor power from<br>motor nameplate data. Also see<br><i>Menu Structure P1.6.</i>                                                                                                                           |
| P3.1.1.7  | Current Limit    | A    | Varies | Varies | Varies  | 107 | Defines maximum current limit for<br>motor. Suggested to use <b>Motor</b><br><b>Nominal Current</b> (P3.1.1.4)<br>multiplied by motor service factor<br>from motor nameplate data. Also<br>see <i>Menu Structure P1.7</i> . |
| P3.1.1.8  | Motor Type       |      | IM     | PMM    | IM      | 650 | Selection of the motor type as<br>follows:<br>0 = IM = Asynchronous Induction<br>Motor<br>1 = PMM = PM Synchronous Motor                                                                                                    |

### Motor Control Settings (M3.1.2)

Table 15: Motor Control Settings.

| Structure | Parameter       | Unit | Min | Max    | Default | ID  | Description                                                                                                                                                                                                                                                                           |
|-----------|-----------------|------|-----|--------|---------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P3.1.2.1  | Switching Freq  | kHz  | 1.5 | Varies | Varies  | 601 | Motor noise can be minimized using a<br>high switching frequency. Increasing the<br>switching frequency reduces the<br>capacity of the drive. It is recommended<br>to use a lower frequency when the motor<br>cable is long in order to minimize<br>capacitive currents in the cable. |
| P3.1.2.2  | Motor Switch    |      | No  | Yes    | No      | 653 | Prevents the drive from tripping when a<br>motor switch is located between the<br>drive and motor.<br>0 = No<br>1 = Yes                                                                                                                                                               |
| P3.1.2.4  | Zero Freq Voltg | %    | 0   | 40     | Varies  | 606 | Defines the zero frequency voltage of the U/f curve.                                                                                                                                                                                                                                  |
Parameters (M3)

| Structure | Parameter            | Unit | Min                | Мах              | Default            | ID   | Description                                                                                                                                                                         |
|-----------|----------------------|------|--------------------|------------------|--------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P3.1.2.5  | Preheat Function     |      | Not Used           | Temp Limit       | Not Used           | 1225 | Defines the use of the <b>PreHeat Function</b><br>(P3.1.2.5).<br>0 = Not Used<br>1 = Always in Stop State<br>2 = Controlled by Digital Input<br>3 = Temp Limit (based on Heat Sink) |
| P3.1.2.6  | Preheat TempLimit    | °F   | -20                | 80               | 0                  | 1226 | Defines the temperature the heat sink<br>falls below for pre-heating the motor and<br>drive when <b>PreHeat Function</b> (P3.1.2.5)<br>is set to <b>Temp Limit</b> .                |
| P3.1.2.7  | Preheat Current      | A    | 0                  | .5*IL            | Varies             | 1227 | Defines the DC current to be use for pre-<br>heating the motor and drive when<br><b>PreHeat Function</b> (P3.1.2.5) is set to<br><b>Stop State</b> .                                |
| P3.1.2.9  | U/f Ratio Select     |      | Linear             | Squared          | Varies             | 108  | Type of U/F curve between zero<br>frequency and the field weakening point.<br>0 = Linear<br>1 = Squared                                                                             |
| P3.1.2.15 | Over Volt Contr      |      | Disabled           | Enabled          | Enabled            | 607  | Enable parameter for the over voltage<br>controller. When enabled, the drive<br>acceleration and speed can be modified<br>by the controller to prevent the drive<br>from tripping.  |
| P3.1.2.16 | Under Volt Contr     |      | Disabled           | Enabled          | Enabled            | 608  | Enable parameter for the over voltage<br>controller. When enabled, the drive<br>acceleration and speed can be modified<br>by the controller to prevent the drive<br>from tripping.  |
| P3.1.2.17 | StatorVoltAdjust     | %    | 50                 | 150              | 100                | 659  | Parameter for adjusting stator voltage in permanent magnet motors.                                                                                                                  |
| P3.1.2.18 | Energy Optimization  |      | Disabled           | Enabled          | Disabled           | 666  | Enable parameter to have the drive<br>search for the minimum motor current in<br>order to save energy and to lower the<br>motor noise.                                              |
| P3.1.2.19 | Flying Start Options |      | Both<br>Directions | FreqRefDirection | Both<br>Directions | 1590 | <ul> <li>0 = Shaft direction is searched in both directions.</li> <li>1 = Shaft direction is searched in setpoint direction only.</li> </ul>                                        |

### U/f ratio selection (P3.1.2.9)

Table 16: Ratio Selections.

| Selection<br>Number | Selection Name | Description                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                   | Linear         | The voltage of the motor changes linearly as a function of output frequency from <b>zero frequency voltage</b> (P3.1.2.4) to the field weakening point (FWP) voltage at FWP frequency. This default setting should be used if there is no special need for another setting.                                                                                                                            |
| 1                   | Squared        | The voltage of the motor changes from <b>zero point voltage</b> (P3.1.2.4) following a squared curve form from zero to the field weakening point. The motor runs under-magnetized below the field weakening point and produces less torque. Squared U/f ratio can be used in applications where torque demand is proportional to the square of the speed (for example, in centrifugal fans and pumps). |



Figure 11: Linear and Squared Change of Motor Voltage.

#### Over-voltage controller (P3.1.2.15) and Under-voltage controller (P3.1.2.16)

These parameters allow the under-/overvoltage controllers to be switched out of operation. This may be useful, for example, if the mains supply voltage varies more than -15% to +10% and the application will not tolerate this over-/under-voltage. In this case, the regulator controls the output frequency taking the supply fluctuations into account. Over-voltage and Under-voltage controllers are enabled by default.

### Start/Stop setup (M3.2)

The start/stop commands are given from different locations depending on the selected control place.

Auto Control Place I/O A: Start, stop, and reverse commands are controlled by two digital inputs chosen with Control Signal 1 A (P3.5.1.1) and Control Signal 2 A (P3.5.1.2). The functionality/logic for these inputs is selected with I/O A Start/Stop Logic (P3.2.6). The I/O B Control Force (P3.5.1.5) will determine when the Auto Control Place I/O B is in use.

Auto Control Place I/O B: Start, stop, and reverse commands are controlled by two digital inputs chosen with Control Signal 1 B (P3.5.1.3) and Control Signal 2 B (P3.5.1.4). The functionality/logic for these inputs is selected with I/O B Start/Stop Logic (P3.2.7). The I/O B Control Force (P3.5.1.5) will determine when the Auto Control Place I/O B is in use.

**Keypad (Hand) Control Place**: Start and stop commands come from the keypad buttons, while the direction of the rotation is selected by **Keypad Direction** (P3.3.7). The speed of the motor is controlled from the keypad buttons or by setting **Keypad Reference** (P3.3.6). The **Keypad Control Reference Selection** (P3.3.5) must be set to a value of Keypad Reference for this work as stated.

**Fieldbus Control Place**: Start, stop, and reverse commands come from the fieldbus. The functionality/logic for the start/stop is selected with **Fieldbus Start Logic** (P3.2.8). The speed of the motor is controlled as selected with **Fieldbus Control Reference Selection** (P3.3.9).

| Structure | Parameter        | Unit | Min         | Max                 | Default        | ID    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------|------------------|------|-------------|---------------------|----------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P3.2.1    | Ctrl. Place Auto |      | I/O Control | Fieldbus Ctrl       | I/O<br>Control | 172   | Start/Stop commands are given<br>differently depending upon the<br>control place. This parameter<br>defines whether the Start/Stop<br>command is controlled by digital<br>inputs as defined in <b>Control Signal</b><br><b>1 A</b> (P3.5.1.1) and <b>Control Signal 2</b><br><b>A</b> (P3.5.1.2) in accordance with the<br>I/O A Start/Stop Logic (P3.2.6) or if<br>the Start/Stop command is<br>controlled by the fieldbus that is in<br>use.<br>Settings:<br>0 = I/O Control (control is from the<br>physical I/O, PID control, or time<br>channels)<br>1 = Fieldbus (control is from the<br>configured fieldbus found in<br>Ethernet or RS-485 settings) |
| P3.2.2    | Hand/Auto        |      | Auto        | Hand                | Auto           | 211   | Defines the operational mode of the<br>unit.<br>0 = Auto (controlled with I/O or<br>fieldbus)<br>1 = Hand (controlled with keypad)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| P3.2.3    | KeypadStopButton |      | No          | Yes                 | No             | 114   | Defines the operational status of<br>the keypad stop button as follows:<br>0 = No (stop button is not functional<br>in all control places)<br>1 = Yes (stop button functions in all<br>control places)                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| P3.2.4    | Start Function   |      | Ramping     | Flying Start        | Varies         | 505   | Defines the start function of the<br>drive.<br>0 = Ramping Start<br>1 = Flying Start                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| P3.2.5    | Stop Function    |      | Coasting    | Ramping             | Coasting       | 506   | Defines the stop function of the<br>drive.<br>0 = Coast to Stop<br>1 = Ramping Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| P3.2.6    | I/O A Logic      |      | Forw-Back   | Start-Rev<br>(edge) | Forw-<br>Back  | 300   | See I/O Table.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| P3.2.7    | I/O B Logic      |      | Forw-Back   | Start-Rev<br>(edge) | Forw-<br>Back  | 363   | Same as <b>I/O A Logic</b> (P3.2.6). <b>I/O B</b><br><b>Ctrl Force</b> (P3.5.1.5) is used to<br>determine when this logic is<br>followed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| P3.2.8    | FB Start Logic   |      | Rising edge | State               | Rising<br>Edge | 889   | Defines the start logic when <b>Ctrl.</b><br><b>Place Auto</b> (P3.2.1) is set to<br><b>FieldbusCTRL</b> .:<br>0 = Rising edge required<br>1 = State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| P3.2.9    | Start Delay      |      | Disabled    | Enabled             | Disabled       | 14063 | Enable parameter for a delayed<br>start. If enabled, the drive will not<br>start when a start is active until the<br>amount of time defined in <b>Start</b><br><b>Delay Time</b> (P3.2.10) has passed.                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

#### Table 17: Start/Stop Parameters.

| Structure | Parameter             | Unit | Min      | Max     | Default  | ID    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------|-----------------------|------|----------|---------|----------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P3.2.10   | Start Delay Time      | S    | 0        | 320     | 0        | 14064 | Defines the delay time before the<br>drive will start after command is<br>issued. <b>Start Delay</b> (P3.2.9) must<br>be enabled.                                                                                                                                                                                                                                                                                                                                 |
| P3.2.11   | Mot. Interlock Start  |      | Disabled | Enabled | Disabled | 1811  | Enable point for the interlock<br>application. If enabled, the drive will<br>energized the relay output defined<br>for <b>DmprIntlckLogic</b> when a start is<br>active. The drive will not start until<br><b>Run Interlock 1</b> (P3.5.1.12) and<br><b>Run Interlock 2</b> (P3.5.1.13) become<br>active if <b>Mot. InterlockTimeout</b><br>(P3.1.12) is set to 0. Otherwise will<br>activate after the time defined in<br><b>Mot. InterlockTimeout</b> (P3.1.12) |
| P3.2.12   | Mot. InterlockTimeout | S    | 0        | 120     | 0        | 1816  | Defines the amount of time the<br>drive will wait for the interlock<br>feedback to be given before<br>starting.<br>0 = No timeout time used. Unit will<br>wait indefinitely for the feedback<br>before starting the drive.<br>> 0 = Unit will only wait this time for<br>the feedback, then start the drive.                                                                                                                                                      |
| P3.2.13   | Run Interlock Proof   |      |          |         |          | 14060 | Defines the run interlock proof<br>timeout time. If <b>Run Interlock 1</b><br>(P3.5.1.12) or <b>Run Interlock 2</b><br>(P3.5.1.13) do not activate within<br>the time defined, the response<br>action defined in <b>Run Interlock Fault</b><br>(P3.9.29) will occur. This requires<br><b>Mot. Interlock Start</b> (P3.2.11) to be<br>enabled.                                                                                                                     |

# Start Function (P3.2.4)

Table 18: Start Function.

| Selection | Name         | Description                                                                                                                                                          |
|-----------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0         | Ramping      | After the Start command, the speed of the motor is accelerated according to the set acceleration parameters to frequency setpoint.                                   |
| 1         | Flying Start | After the Start command, the drive quickly adjusts the output frequency until the actual motor speed has been found. Then the motor ramps to the frequency setpoint. |

# Stop Function (P3.2.5)

Table 19: Stop Function.

| Selection<br>number | Selection name | Description                                                                                                                                                         |
|---------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                   | Coasting       | The motor is allowed to stop on its own inertia. The control by the drive is discontinued and the drive current drops to zero as soon as the stop command is given. |
| 1                   | Ramp           | After the Stop command, the speed of the motor is decelerated according to the set deceleration parameters to zero speed.                                           |

### I/O start/stop logic (P3.2.6)

Values 0 through 4 offer possibilities to control the starting and stopping of the drive with a digital signal connected to digital inputs. CS = Control signal.

| Logic | Operation Description                                                                                                                                                                             |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0     | Ctrl Signal 1 A (P3.5.1.1) = Start Forward<br>Ctrl Signal 2 A (P3.5.1.2)= Start Reverse<br>Ctrl Signal 1 B (P3.5.1.3) = Start Forward<br>Ctrl Signal 2 B (P3.5.1.4) = Start Reverse               |
| 1     | Ctrl Signal 1 A (P3.5.1.1) = Start Forward (Edge)<br>Ctrl Signal 2 A (P3.5.1.2) = Start Reverse (Edge<br>Ctrl Signal 1 B (P3.5.1.3) = Inverted Stop<br>Ctrl Signal 2 B (P3.5.1.4) = Inverted Stop |
| 2     | Ctrl Signal 1 A (3.5.1.1) = Forward (Edge)<br>Ctrl Signal 2 A (3.5.1.2) = Backward (Edge)<br>Ctrl Signal 1 B (3.5.1.3) = Forward (Edge)<br>Ctrl Signal 2 B (3.5.1.4) = Backward (Edge)            |
| 3     | Ctrl Signal 1 A (P3.5.1.1) = Start<br>Ctrl Signal 2 A (P3.5.1.2) = Reverse<br>Ctrl Signal 1 B (P3.5.1.3) = Start<br>Ctrl Signal 2 B (P3.5.1.4) = Reverse                                          |
| 4     | Ctrl Signal 1 A (P3.5.1.1) = Start (Edge)<br>Ctrl Signal 2 A (P3.5.1.2) = Reverse<br>Ctrl Signal 1 B (P3.5.1.3) = Start (Edge)<br>Ctrl Signal 2 B (P3.5.1.4) = Reverse                            |

Table 20: I/O Logic.

The selections including the text 'edge' shall be used to exclude the possibility of an unintentional start when, for example, power is connected, re-connected after a power failure, after a fault reset, after the drive is stopped by **Run Enable** (Run Enable = False) or when the control place is changed to I/O control.

**NOTE:** The Start/Stop contact must be opened before the motor can be started.

The used stop mode is *Coasting* in all examples.



Figure 12: I/O A Start/Stop logic = 0. Table 21: Legend to I/O A Start/Stop logic = 0.

| 1 | Control signal (CS) 1 activates causing the output frequency to rise. The motor runs forward.                          | 8  | Run enable signal is set to FALSE, which<br>drops the frequency to 0. The run enable<br>signal is configured with <b>RunEnable</b><br>(P3.5.1.11).       |
|---|------------------------------------------------------------------------------------------------------------------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | CS2 activate, but has no effect on the output frequency because the first selected direction has the highest priority. | 9  | Run enable signal is set to TRUE, which<br>causes the frequency to rise towards the set<br>frequency because CS1 is still active.                        |
| 3 | CS1 is inactivated which causes the direction<br>to start changing (FWD to REV) because CS2<br>is still active.        | 10 | Keypad stop button is pressed and the<br>frequency fed to the motor drops to 0. (This<br>signal only works if <b>KeypadStopButton</b><br>[P3.2.3] = Yes) |
| 4 | CS2 inactivates and the frequency fed to the motor drops to 0.                                                         | 11 | The drive starts through pressing the Start button on the keypad.                                                                                        |
| 5 | CS2 activates again causing the motor to accelerate (REV) towards the set frequency.                                   | 12 | The keypad stop button is pressed again to stop the drive.                                                                                               |
| 6 | CS2 inactivates and the frequency fed to the motor drops to 0.                                                         | 13 | The attempt to start the drive through pressing the Start button is not successful because CS1 is inactive.                                              |
| 7 | CS1 activates and the motor accelerates (FWD) towards the set frequency.                                               |    |                                                                                                                                                          |

Parameters (M3)



Table 22: Legend to IO A Start/Stop logic = 1.

| 1 | Control signal (CS) 1 activates causing the output frequency to rise. The motor runs forward.                                                       | 6 | CS1 activates and the motor accelerates<br>(FWD) towards the set frequency because<br>the Run enable signal has been set to TRUE.                        |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | CS2 inactivates causing the frequency to drop to 0.                                                                                                 | 7 | Keypad stop button is pressed and the<br>frequency fed to the motor drops to 0. (This<br>signal only works if <b>KeypadStopButton</b><br>[P3.2.3] = Yes) |
| 3 | CS1 activates causing the output frequency to rise again. The motor runs forward.                                                                   | 8 | CS1 activates causing the output frequency to rise again. The motor runs forward.                                                                        |
| 4 | Run enable signal is set to FALSE, which<br>drops the frequency to 0. The run enable<br>signal is configured with <b>Run Enable</b><br>(P3.5.1.10). | 9 | CS2 inactivates causing the frequency to drop to 0.                                                                                                      |
| 5 | Start attempt with CS1 is not successful because Run enable signal is still FALSE.                                                                  |   |                                                                                                                                                          |

Parameters (M3)

| Logic | Selection Name                              | Note                                                                                                                                |
|-------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 2     | CS1: Forward (edge)<br>CS2: Backward (edge) | Used to exclude the possibility of an unintentional start. The Start/Stop contact must be opened before the motor can be restarted. |



Figure 14: I/O A Start/Stop logic = 2. Table 23: Legend to I/O A Start/Stop logic = 2.

| 1 | Control signal (CS) 1 activates causing the output frequency to rise. The motor runs forward.                                 | 7  | CS1 activates and the motor accelerates<br>(FWD) towards the set frequency                                                                                                        |
|---|-------------------------------------------------------------------------------------------------------------------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | CS2 activates, but has no effect on the output<br>frequency because the first selected direction<br>has the highest priority. | 8  | Run enable signal is set to FALSE, which<br>drops the frequency to 0. The run enable<br>signal is configured with <b>RunEnable</b><br>(P3.5.1.11).                                |
| 3 | CS1 is inactivated which causes the direction<br>to start changing (FWD to REV) because CS2<br>is still active.               | 9  | Run enable signal is set to TRUE, which,<br>unlike if value 0 is selected for this<br>parameter, has no effect because rising edge<br>is required to start even if CS1 is active. |
| 4 | CS2 inactivates and the frequency fed to the motor drops to 0.                                                                | 10 | Keypad stop button is pressed and the frequency fed to the motor drops to 0. (This signal only works if <b>KeypadStopButton</b> [P3.2.3] = Yes).                                  |
| 5 | CS2 activates again causing the motor to accelerate (REV) towards the set frequency.                                          | 11 | CS1 is opened and closed again which causes the motor to start.                                                                                                                   |
| 6 | CS2 inactivates and the frequency fed to the motor drops to 0.                                                                | 12 | CS1 inactivates and the frequency fed to the motor drops to 0.                                                                                                                    |

Parameters (M3)



|   | forward.                                                                                                        |    | signal is configured with <b>Run Enable</b> (P3.5.1.11).                                                                                         |
|---|-----------------------------------------------------------------------------------------------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | CS2 activates which causes the direction to start changing (FWD to REV).                                        | 8  | Run enable signal is set to TRUE, which causes the frequency to rise towards the set frequency because CS1 is still active.                      |
| 3 | CS2 is inactivated which causes the direction<br>to start changing (REV to FWD) because CS1<br>is still active. | 9  | Keypad stop button is pressed and the frequency fed to the motor drops to 0. (This signal only works if <b>KeypadStopButton</b> [P3.2.3] = Yes). |
| 4 | Also CS1 inactivates and the frequency drops to 0.                                                              | 10 | The drive starts through pressing the Start button on the keypad.                                                                                |
| 5 | Despite the activation of CS2, the motor does not start because CS1 is inactive.                                | 11 | The drive is stopped again with the stop button on the keypad.                                                                                   |
| 6 | CS1 activates causing the output frequency to rise again. The motor runs forward because CS2 is inactive.       | 12 | The attempt to start the drive through<br>pressing the Start button is not successful<br>because CS1 is inactive.                                |

Parameters (M3)





Figure 16: I/O A Start/Stop logic = 4. Table 25: Legend to I/O A Start/Stop logic = 4.

| 1 | Control signal (CS) 1 activates causing the output frequency to rise. The motor runs forward because CS2 is inactive. | 7  | Run enable signal is set to <b>FALSE</b> , which drops the frequency to 0. The run enable signal is configured with <b>Run Enable</b> (P3.5.1.11). |
|---|-----------------------------------------------------------------------------------------------------------------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | CS2 activates which causes the direction to start changing (FWD to REV).                                              | 8  | Before a successful start can take place, CS1 must be opened and closed again.                                                                     |
| 3 | CS2 is inactivated which causes the direction to start changing (REV to FWD) because CS1 is still active.             | 9  | Keypad stop button is pressed and the frequency fed to the motor drops to 0. (This signal only works if <b>KeypadStopButton</b> [P3.2.3] = Yes).   |
| 4 | Also CS1 inactivates and the frequency drops to 0.                                                                    | 10 | Before a successful start can take place, CS1 must be opened and closed again.                                                                     |
| 5 | Despite the activation of CS2, the motor does not start because CS1 is inactive.                                      | 11 | CS1 inactivates and the frequency drops to 0.                                                                                                      |
| 6 | CS1 activates causing the output frequency to rise again. The motor runs forward because CS2 is inactive.             |    |                                                                                                                                                    |

### Control reference settings (M3.3)

The frequency reference source is programmable for all control places except the computer, which always takes the reference from the PC tool.

Auto Control Place I/O A: The source of frequency reference can be selected with I/O Control Reference A Selection (P3.3.3). The I/O B Reference Force (P3.5.1.6) will determine when the I/O Control Reference B is in use.

Auto Control Place I/O B: The source of frequency reference can be selected with I/O Control Reference B Selection (P3.3.4). The I/O B Reference Force (P3.5.1.6) will determine when the I/O Control Reference B is in use. Keypad (Hand) Control Place: The source of the frequency reference can be selected with Keypad Control

**Reference Selection** (P3.3.5). If set to a value of Keypad Reference; then the keypad buttons or **Keypad Reference** (P3.3.6) can be used to set the frequency reference.

Fieldbus Control Place: The source of the frequency reference can be selected with Fieldbus Control Reference Selection (P3.3.9).

| Structure | Parameter       | Unit | Min                 | Max              | Default    | ID  | Description                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------|-----------------|------|---------------------|------------------|------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P3.3.1    | Min Frequency   | Hz   | 0                   | Parameter P3.3.2 | 0          | 101 | Minimum allowed frequency reference                                                                                                                                                                                                                                                                                                                                                                          |
| P3.3.2    | Max Frequency   | Hz   | Parameter<br>P3.3.1 | 320              | 60         | 102 | Maximum allowed frequency reference                                                                                                                                                                                                                                                                                                                                                                          |
| P3.3.3    | I/O A Ctrl Ref  |      | PresetFreq0         | Motor Pot Ref    | AI1 + AI2  | 117 | Selects location of frequency setpoint<br>source when in I/O A control. In the<br>following list of possible settings, the<br>main setpoint is selected:<br>1 = Preset Freq 0<br>2 = Keypad Reference<br>3 = Fieldbus<br>4 = Al1<br>5 = Al2<br>6 = Al1+Al2<br>7 = PID 1 Reference<br>8 = Motor Potentiometer<br><i>Also see M1.10.</i>                                                                       |
| P3.3.4    | I/O B Ctrl Ref  |      | PresetFreq0         | Motor Pot Ref    | AI1        | 131 | Selects location of frequency setpoint<br>source when in I/O B control. In the<br>following list of possible settings, the<br>main setpoint is selected:<br>1 = Preset Freq 0<br>2 = Keypad Reference<br>3 = Fieldbus<br>4 = AI1<br>5 = AI2<br>6 = AI1+AI2<br>7 = PID 1 Reference<br>8 = Motor Potentiometer<br>I/O B Ref Force (P3.5.1.6) is used to<br>determine when this reference is to<br>be followed. |
| P3.3.5    | Keypad Ctrl Ref |      | PresetFreq0         | Motor Pot Ref    | Keypad Ref | 121 | Defines the location of Keyboard<br>Control Reference:<br>1 = Preset Freq 0<br>2 = Keypad Reference<br>3 = Fieldbus<br>4 = Al1<br>5 = Al2<br>6 = Al1+Al2<br>7 = PID 1 Reference<br>8 = Motor Potentiometer                                                                                                                                                                                                   |

Table 26: Control Reference Settings.

| Structure | Parameter           | Unit | Min                            | Max                         | Default                       | ID  | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------|---------------------|------|--------------------------------|-----------------------------|-------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P3.3.6    | Keypad<br>Reference | Hz   | 0                              | Parameter P3.3.2            | Parameter P3.3.2 0 184 D<br>w |     | Defines the frequency reference<br>when in HAND (keypad) mode of<br>operation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| P3.3.7    | Keypad Direction    |      | Forward                        | Reverse                     | Forward                       | 123 | Defines the motor rotation when in<br>HAND (keypad) mode of operation<br>0 = Forward<br>1 = Reverse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| P3.3.8    | KeypadRefCopy       |      | Copy Ref<br>Run                | No Copying                  | Copy Ref<br>Run               | 181 | Defines the function of Run State &<br>Reference copy when switching to<br>Keypad control.<br>0 = Copy Reference<br>1 = Copy Ref & Run State<br>2 = No Copy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| P3.3.9    | FieldbusCtrl Ref    |      | PresetFreq0                    | Motor Pot Ref               | Fieldbus                      | 122 | Defines the location of Fieldbus<br>Control Reference:<br>1 = Preset Freq 0<br>2 = Keypad Reference<br>3 = Fieldbus<br>4 = Al1<br>5 = Al2<br>6 = Al1+Al2<br>7 = PID 1 Reference<br>8 = Motor Potentiometer                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| P3.3.10   | PresetFreqMode      |      | Binary Coded                   | Number of inputs            | Binary Coded                  | 182 | Defines the preset frequency mode to<br>be used:<br>0 = Binary Coded<br>1 = Number of inputs. Preset freq<br>selected according to number of<br>digital inputs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| P3.3.11   | Preset Freq 0       | Hz   | Parameter<br>P1.8 or<br>P3.3.1 | Parameter<br>P1.9 or P3.3.2 | 5                             | 180 | Defines the frequency to be used<br>when I/O A Ctrl Ref (P3.3.3), I/O B<br>Ctrl Ref (P3.3.4), Keypad Ctrl Ref<br>(P3.3.5) and/or FieldbusCtrl Ref<br>(P3.3.9) is set to a value of Preset<br>Freq 0.                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| P3.3.12   | Preset Freq 1       | Hz   | Parameter<br>P1.8 or<br>P3.3.1 | Parameter<br>P1.9 or P3.3.2 | 10                            | 105 | Defines the frequency to be used<br>when the following occurs:<br>1. <b>PresetFreqMode</b> (P3.3.10) is set to<br><b>Binary Coded</b> and<br><b>Preset Freq Sel0</b> (P3.5.1.15) is<br>activated.<br><b>Preset Freq Sel1</b> (P3.5.1.16) is de-<br>activated.<br><b>Preset Freq Sel2</b> (P3.5.1.17) is de-<br>activated.<br>2. <b>PresetFreqMode</b> (P3.3.10) is set to<br><b>Number of Inputs</b> &<br><b>Preset Freq Sel0</b> (3.5.1.15) is<br>activated.<br><b>Preset Freq Sel1</b> (3.5.1.16) is de-<br>activated.<br><b>Preset Freq Sel1</b> (3.5.1.17) is de-<br>activated.<br><b>Preset Freq Sel2</b> (3.5.1.17) is de-<br>activated. |

Parameters (M3)

| Structure | Parameter     | Unit | Min                            | Max                         | Default | ID  | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------|---------------|------|--------------------------------|-----------------------------|---------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P3.3.13   | Preset Freq 2 | Hz   | Parameter<br>P1.8 or<br>P3.3.1 | Parameter<br>P1.9 or P3.3.2 | 15      | 106 | Defines the frequency to be used<br>when the following occurs:<br>1. <b>PresetFreqMode</b> (P3.3.10) is set to<br><b>Binary Coded</b> and<br><b>Preset Freq Sel0</b> (P3.5.1.15) is de-<br>activated.<br><b>Preset Freq Sel1</b> (P3.5.1.16) is<br>activated.<br><b>Preset Freq Sel2</b> (P3.5.1.17) is de-<br>activated.<br>2. <b>PresetFreqMode</b> (P3.3.10) is set to<br><b>Number of Inputs</b> &<br><b>Preset Freq Sel0</b> (P3.5.1.15) is de-<br>activated.<br><b>Preset Freq Sel0</b> (P3.5.1.15) is de-<br>activated.<br><b>Preset Freq Sel1</b> (P3.5.1.16) is<br>activated.<br><b>Preset Freq Sel2</b> (P3.5.1.17) is de-<br>activated.<br><b>Preset Freq Sel2</b> (P3.5.1.17) is de-<br>activated. |
| P3.3.14   | Preset Freq 3 | Hz   | Parameter<br>P1.8 or<br>P3.3.1 | Parameter<br>P1.9 or P3.3.2 | 20      | 126 | Defines the frequency to be used<br>when the following occurs:<br>1. <b>PresetFreqMode</b> (P3.3.10) is set to<br><b>Binary Coded</b> &<br><b>Preset Freq Sel0</b> (P3.5.1.15) is<br>activated.<br><b>Preset Freq Sel1</b> P(3.5.1.16) is<br>activated.<br><b>Preset Freq Sel2</b> (P3.5.1.17) is de-<br>activated.<br>2. <b>PresetFreqMode</b> (P3.3.10) is set to<br><b>Number of Inputs</b> &<br><b>Preset Freq Sel0</b> (P3.5.1.15) is de-<br>activated.<br><b>Preset Freq Sel1</b> (P3.5.1.16) is de-<br>activated.<br><b>Preset Freq Sel1</b> (P3.5.1.16) is de-<br>activated.<br><b>Preset Freq Sel2</b> (P3.5.1.17) is<br>activated.                                                                   |
| P3.3.15   | Preset Freq 4 | Hz   | Parameter<br>P1.8 or<br>P3.3.1 | Parameter<br>P1.9 or P3.3.2 | 25      | 127 | Defines the frequency to be used<br>when the following occurs:<br>1. <b>PresetFreqMode</b> (P3.3.10) is set to<br><b>Binary Coded</b> &<br><b>Preset Freq Sel0</b> (P3.5.1.15) is de-<br>activated.<br><b>Preset Freq Sel1</b> (P3.5.1.16) is de-<br>activated.<br><b>Preset Freq Sel2</b> (P3.5.1.17) is<br>activated.                                                                                                                                                                                                                                                                                                                                                                                        |
| P3.3.16   | Preset Freq 5 | Hz   | Parameter<br>P1.8 or<br>P3.3.1 | Parameter<br>P1.9 or P3.3.2 | 30      | 128 | Defines the frequency to be used<br>when the following occurs:<br>1. PresetFreqMode (P3.3.10) is set to<br>Binary Coded &<br>Preset Freq Sel0 (P3.5.1.15) is<br>activated.<br>Preset Freq Sel1 (P3.5.1.16) is de-<br>activated.<br>Preset Freq Sel2 (P3.5.1.17) is<br>activated.                                                                                                                                                                                                                                                                                                                                                                                                                               |

| Structure | Parameter           | Unit | Min                            | Max                         | Default    | ID  | Description                                                                                                                                                                                                                                                                                                         |
|-----------|---------------------|------|--------------------------------|-----------------------------|------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P3.3.17   | Preset Freq 6       | Hz   | Parameter<br>1.8 or P3.3.1     | Parameter<br>1.9 or P3.3.2  | 40         | 129 | Defines the frequency to be used<br>when the following occurs:<br>1. <b>PresetFreqMode</b> (P3.3.10) is set to<br><b>Binary Coded</b> &<br><b>Preset Freq Sel0</b> (P3.5.1.15) is de-<br>activated.<br><b>Preset Freq Sel1</b> (P3.5.1.16) is<br>activated.<br><b>Preset Freq Sel2</b> (P3.5.1.17) is<br>activated. |
| P3.3.18   | Preset Freq 7       | Hz   | Parameter<br>P1.8 or<br>P3.3.1 | Parameter<br>P1.9 or P3.3.2 | 50         | 130 | Defines the frequency to be used<br>when the following occurs:<br>1. <b>PresetFreqMode</b> (P3.3.10) is set to<br><b>Binary Coded &amp;</b><br><b>Preset Freq Sel0</b> (P3.5.1.15) is<br>activated.<br><b>Preset Freq Sel1</b> (P3.5.1.16) is<br>activated.<br><b>Preset Freq Sel2</b> (P3.5.1.17) is<br>activated. |
| P3.3.19   | PresetAlarmFreq     | Hz   | Parameter<br>P1.8 or<br>P3.3.1 | Parameter<br>P1.9 or P3.3.2 | 25         | 183 | Defines the frequency to be followed<br>when fault responses (found in<br>Protections [P3.9]) are defined for<br>Alarm + Preset Freq.<br>AI Low Fault (P3.9.1)<br>FieldbusComm Fit (P3.9.19)                                                                                                                        |
| P3.3.20   | MotPot Ramp<br>Time | Hz/s | 0.1                            | 500                         | 10         | 331 | Rate of change in the motor<br>potentiometer reference when<br>increased or decreased.                                                                                                                                                                                                                              |
| P3.3.21   | MotPot Reset        |      | No Reset                       | Powered down                | Stop State | 367 | Motor potentiometer frequency<br>reference reset logic<br>0 = No Reset<br>1 = Reset if stop state<br>2 = Reset if powered down                                                                                                                                                                                      |

### **Understanding Preset Frequencies**

### Preset frequency mode (P3.3.10)

You can use the preset frequency parameters to define certain frequency references in advance. These references are then applied by activating/deactivating the digital inputs connected to parameters **Preset frequency selection 0** (P3.5.1.15), **Preset frequency selection 1** (P3.5.1.16) and **Preset frequency selection 2** (P3.5.1.17). Two different logics can be selected:

| Table 27: Preset Frequency Logic |
|----------------------------------|
|----------------------------------|

| Selection<br>number | Selection name          | Note                                                                                                                                                |
|---------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                   | Binary coded            | Combine activated inputs according to the table below to choose the Preset frequency needed.                                                        |
| 1                   | Number (of inputs used) | You can apply the <i>Preset frequencies</i> 1 to 3, depending on how many of the inputs assigned for <i>Preset frequency selections</i> are active. |

#### **Binary Coded Operation**

The values of the preset frequencies are automatically limited between the **Minimum Frequency** (P3.3.1) and **Maximum Frequency** (P3.3.2). The following table displays the operation to select the preset frequencies:

| For use with 1/O C | Activated Frequency<br>Preset Frequency 0 (P3.3.11) |                |                              |
|--------------------|-----------------------------------------------------|----------------|------------------------------|
| B2 (P3.5.1.17)     | B1 (P3.5.1.16)                                      | B0 (P3.5.1.15) |                              |
| Off                | Off                                                 | On             | Preset Frequency 1 (P3.3.12) |
| Off                | On                                                  | Off            | Preset Frequency 2 (P3.3.13) |
| Off                | On                                                  | On             | Preset Frequency 3 (P3.3.14) |
| On                 | Off                                                 | Off            | Preset Frequency 4 (P3.3.15) |
| On                 | Off                                                 | On             | Preset Frequency 5 (P3.3.16) |
| On                 | On                                                  | Off            | Preset Frequency 6 (P3.3.17) |
| On                 | On                                                  | On             | Preset Frequency 7 (P3.3.18) |

Table 28: Preset Frequencies 1 Through 7.

#### Number of Inputs Operation

The values of the preset frequencies are automatically limited between the **Minimum Frequency** (P3.3.1) and **Maximum Frequency** (P3.3.2). The following table displays the operation to select the preset frequencies:

Table 29: Number of Inputs Used: Preset Frequencies 1 through 3.

| For use with 1/O C | Activated Frequency<br>Preset Frequency 0 (P3.3.11) |                |                              |
|--------------------|-----------------------------------------------------|----------------|------------------------------|
| B2 (P3.5.1.17)     | B1 (P3.5.1.16)                                      | B0 (P3.5.1.15) |                              |
| Off                | Off                                                 | On             | Preset Frequency 1 (P3.3.12) |
| Off                | On                                                  | Off            | Preset Frequency 2 (P3.3.13) |
| On                 | Off                                                 | On             | Preset Frequency 3 (P3.3.14) |

### Ramp and Brakes Setup (M3.4)

Two ramps are available (two sets of acceleration times, deceleration times, and ramp shapes). The second ramp can be activated using a digital input.



#### NOTE:

Ramp 2 always has higher priority and is used if a digital input for **Accel/Decel Time Selection** (P.5.1.33) is activated.

The ramps and brakes settings are presented in the following table:

| Structure | Parameter        | Unit | Min      | Max     | Default  | ID  | Description                                                                                                       |
|-----------|------------------|------|----------|---------|----------|-----|-------------------------------------------------------------------------------------------------------------------|
| P3.4.1    | Ramp 1 Shape     | s    | 0        | 10      | 0        | 500 | S-curve time ramp 1.                                                                                              |
| P3.4.2    | Accel Time 1     | S    | 0.1      | 3000    | 20       | 103 | Defines the time required to<br>increase output freq from 0 to <b>Max</b><br><b>Frequency</b> (P3.3.1).           |
| P3.4.3    | Decel Time 1     | S    | 0.1      | 3000    | 20       | 104 | Defines the time required to<br>decrease output freq from <b>Max</b><br><b>Frequency</b> (P3.3.1) to 0 frequency. |
| P3.4.4    | Ramp 2 Shape     | s    | 0        | 10      | 0        | 501 | S-curve time ramp 2.                                                                                              |
| P3.4.5    | Accel Time 2     | S    | 0.1      | 3000    | 10       | 502 | Defines the time required to<br>increase output freq from 0 to <b>Max</b><br><b>Frequency</b> (P3.3.1).           |
| P3.4.6    | Decel Time 2     | S    | 0.1      | 3000    | 10       | 503 | Defines the time required to<br>decrease output freq from <b>Max</b><br><b>Frequency</b> (P3.3.1) to 0 frequency. |
| P3.4.7    | StartMagnTime    | S    | 0        | 600     | 0        | 516 | Defines the time for how long DC current is fed to motor before acceleration starts.                              |
| P3.4.8    | StartMagnCurrent | A    | Varies   | Varies  | Varies   | 517 | Defines the DC current to be used at start of the motor.                                                          |
| P3.4.9    | DC Time Stop     | S    | 0        | 600     | 0        | 508 | Determines if braking is ON or OFF<br>and the braking time of the DC<br>brake when the motor is stopping.         |
| P3.4.10   | DC Brake Current | A    | Varies   | Varies  | Varies   | 507 | Defines the current injected into the<br>motor during DC braking.<br>0 = Disabled                                 |
| P3.4.11   | DC BrakeFreqStop | Hz   | 0.1      | 10      | 1.5      | 515 | The output frequency at which the DC braking is applied.                                                          |
| P3.4.12   | Flux Braking     |      | Disabled | Enabled | Disabled | 520 | Settings:<br>0 = Disabled<br>1 = Enabled                                                                          |
| P3.4.13   | FluxBrakeCurrent | A    | 0        | Varies  | Varies   | 519 | Defines the current level for Flux braking.                                                                       |

#### Table 30: Ramp and Brakes Settings.

### Ramp 1 shape (P3.4.1)

The start and end of acceleration and deceleration ramps can be smoothed with this parameter. Setting value 0 gives a linear ramp shape which causes acceleration and deceleration to act immediately to the changes in the reference signal.

Setting value 0.1 to 10 seconds for this parameter produces an S-shaped acceleration/deceleration. The acceleration time is determined with **Accel Time 1** (P3.4.2) and **Decel Time 1** (P3.4.3). See the following figure. These parameters are used to reduce mechanical erosion and current spikes when the reference is changed.



Figure 17: Acceleration/Deceleration (S-shaped).

#### Flux braking (P3.4.12)

Instead of DC braking, flux braking is a useful way to raise the braking capacity in cases where additional brake resistors are not needed.

When braking is needed, the frequency is reduced and the flux in the motor is increased, which in turn increases the motor's capability to brake. Unlike DC braking, the motor speed remains controlled during braking. The flux braking can be set ON or OFF.

ne flux braking can be set ON or 0



#### NOTE:

Flux braking converts the energy into heat at the motor, and should be used intermittently to avoid motor damage.

### I/O Configuration (M3.5)

The I/O configuration is used to attach features/functions of the drive to the controlling I/O or control source. There are four I/O configuration areas: Digital Inputs, Digital Outputs, Analog Inputs, and Analog Outputs.

### Digital Inputs (M3.5.1)

The digital inputs are very flexible to use. Parameters are functions/features that are connected to the required digital input terminals. The digital inputs are represented by the slot they exist on. For example, **DigIN Slot A.2** means the second digital input on slot A (basic I/O). It is possible for the function/feature to be always disabled (or enabled) by using the virtual slot0. For example, to leave a parameter as normally open all the time, it would be programmed as **DigIN Slot0.1**. Likewise, to leave a parameter as normally closed all the time, it would be programmed as **DigIN Slot0.2**.

It is also possible to connect the digital inputs to time channels which are also represented as terminals. For example, to run the drive in reverse in accordance with the first time channel, it would be programmed as **TimeChannel.1**.



#### NOTE:

The status of the digital inputs can be monitored in the **multimonitor** (M2.1) view, or in the I/O and **Hardware (M5)** menu.

#### The digital inputs settings are presented in the following table:

Table 31: Digital Inputs Settings.

| Structure | Parameter                          | Default       | ID   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------|------------------------------------|---------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P3.5.1.1  | Ctrl Signal 1 A<br>(Start Forward) | DigIN SlotA.1 | 403  | Defines the location for selection of Control Signal 1 A as defined by<br>I/O A Logic (P3.2.6) [Start Forward]<br>Possible settings are as follows:<br>TimeChannel.#<br>DigIN Slot0.#<br>DigIN Slot0.#<br>DigIN SlotC.#<br>DigIN SlotC.#<br>DigIN SlotD.#<br>DigIN SlotE.#<br>Where # is the channel number or occurrence number.<br>NOTE: Slot C, D, and E available if option cards are installed and<br>contain Digital Input type objects. |
| P3.5.1.2  | Ctrl Signal 2 A<br>(Start Reverse) | DigIN SlotA.2 | 404  | Defines the location for selection of Control Signal 2 A as defined by <b>I/O A Logic</b> (P3.2.6) [Start Reverse].<br>Possible settings are the same as <b>Ctrl Signal 1 A</b> (P3.5.1.1).                                                                                                                                                                                                                                                    |
| P3.5.1.3  | Ctrl Signal 1 B<br>(Start Forward) | DigIN Slot0.1 | 423  | Defines the location for selection of Control Signal 1 B as defined by <b>I/O B Logic</b> (P3.2.7) [Start Forward].<br>Possible settings are the same as <b>Ctrl Signal 1 A</b> (P3.5.1.1).                                                                                                                                                                                                                                                    |
| P3.5.1.4  | Ctrl Signal 2 B<br>(Start Reverse) | DigIN Slot0.1 | 424  | Defines the location for selection of Control Signal 2 B as defined by <b>I/O B Logic</b> (P3.2.7) [Start Reverse].<br>Possible settings are the same as <b>Ctrl Signal 1 A</b> (P3.5.1.1).                                                                                                                                                                                                                                                    |
| P3.5.1.5  | I/O B Ctrl Force                   | DigIN Slot0.1 | 425  | Defines the location to determine when <b>I/O B Logic</b> (P3.2.7) should<br>be followed.<br>Open Contact = <b>I/O A Logic</b> (P3.2.6) is followed.<br>Contact Closure = <b>I/O B Logic</b> (P3.2.7) is followed.                                                                                                                                                                                                                             |
| P3.5.1.6  | I/O B Ref Force                    | DigIN Slot0.1 | 343  | Defines the location to determine when <b>I/O B Ctrl Ref</b> (P3.3.4)<br>should be followed.<br>Open Contact = <b>I/O A Ctrl Ref</b> (P3.3.3) is followed.<br>Contact Closure = <b>I/O B Ctrl Ref</b> (P3.3.4) is followed.                                                                                                                                                                                                                    |
| P3.5.1.7  | Ext Fault Close                    | DigIN SlotA.3 | 405  | Defines the location to monitor to generate response to <b>External</b><br><b>Fault</b> (P3.9.2) on contact closure.<br>Open Contact = OK<br>Contact Closure = External Fault Active                                                                                                                                                                                                                                                           |
| P3.5.1.8  | Ext Fault Open                     | DigIN Slot0.2 | 406  | Defines the location to monitor to generate response to <b>External</b><br><b>Fault</b> (P3.9.2) on contact open.<br>Open Contact = External Fault Active<br>Contact Closure = OK                                                                                                                                                                                                                                                              |
| P3.5.1.9  | Fault Reset Close                  | DigIN SlotA.6 | 414  | Defines the location of fault reset on contact closure (rising edge).<br>Contact Closure = Reset                                                                                                                                                                                                                                                                                                                                               |
| P3.5.1.10 | Fault Reset Open                   | DigIN Slot0.1 | 213  | Defines the location of fault reset on open contact (falling edge).<br>Open Contact = Reset                                                                                                                                                                                                                                                                                                                                                    |
| P3.5.1.11 | Run Enable                         | DigIN Slot0.2 | 407  | Defines the location of the run enable.<br>Open Contact = Disabled = NOT READY<br>Contact Closure = Enabled = READY<br>The VFD is stopped according to the <b>Stop Function</b> (P3.2.5).<br><b>NOTE:</b> When fieldbus is used, refer to <b>FB Run Enable</b> (P3.6.9).                                                                                                                                                                       |
| P3.5.1.12 | Run Interlock 1                    | DigIN Slot0.2 | 1041 | Defines the input monitored for proof of the interlock application<br>when <b>Mot. Interlock Start</b> (P3.2.11) is <b>enabled</b> .<br>The drive cannot be started if any of the interlocks are open. This<br>function can be used for a damper interlock, preventing the drive<br>from starting with the damper closed.                                                                                                                      |

| Structure | Parameter            | Default       | ID   | Description                                                                                                                                                                                                                                                                                                               |
|-----------|----------------------|---------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P3.5.1.13 | Run Interlock 2      | DigIN Slot0.2 | 1042 | Defines the input monitored for proof of the interlock application<br>when <b>Mot. Interlock Start</b> (P3.2.11) is <b>enabled</b> .<br>The Drive cannot be started if any of the interlocks are open. This<br>function can be used for a damper interlock, preventing the Drive<br>from starting with the damper closed. |
| P3.5.1.14 | PreHeat ON           | DigIN Slot0.1 | 1044 | Used when <b>Preheat Function</b> (P3.1.2.5) is set to 2<br>0 = No action<br>1 = Used motor preheat DC current in Stop state                                                                                                                                                                                              |
| P3.5.1.15 | Preset Freq Sel0     | DigIN SlotA.4 | 419  | Defines the location for the binary selector 0 used with<br><b>PresetFreqMode</b> (P3.3.10), and <b>Preset Freq 1</b> (P3.3.12), <b>through</b><br><b>Preset Freq 7</b> (P3.3.18).                                                                                                                                        |
| P3.5.1.16 | Preset Freq Sel1     | DigIN SlotA.5 | 420  | Defines the location for the binary selector 0 used with<br><b>PresetFreqMode</b> (P3.3.10), and <b>Preset Freq 1</b> (P3.3.12), <b>through</b><br><b>Preset Freq 7</b> (P3.3.18).                                                                                                                                        |
| P3.5.1.17 | Preset Freq Sel2     | DigIN Slot0.1 | 421  | Defines the location for the binary selector 0 used with<br><b>PresetFreqMode</b> (P3.3.10), and <b>Preset Freq 1</b> (P3.3.12), <b>through</b><br><b>Preset Freq 7</b> (P3.3.18).                                                                                                                                        |
| P3.5.1.18 | Timer 1              | DigIN Slot0.1 | 447  | Defines the location to the rising edge to start timer 1 as programmed in <b>Timer Functions</b> (P3.11) menu structure.                                                                                                                                                                                                  |
| P3.5.1.19 | Timer 2              | DigIN Slot0.1 | 448  | Defines the location to the rising edge to start timer 2 as programmed in <b>Timer Functions</b> (P3.11) menu structure.                                                                                                                                                                                                  |
| P3.5.1.20 | Timer 3              | DigIN Slot0.1 | 449  | Defines the location to the rising edge to start timer 3 as programmed in <b>Timer Functions</b> (P3.11) menu structure.                                                                                                                                                                                                  |
| P3.5.1.21 | Disable Timer Funct. | DigIN Slot0.1 | 1499 | Enable parameter for all timer functions including Intervals 1-5 and<br>Timer 1-3 (programmable in <b>Timer Functions</b> (P3.11) menu<br>structure).<br>Contact closure = Timer functions and reset timers disabled<br>Open Contact = Timer functions and reset timers enabled                                           |
| P3.5.1.22 | PID1 Boost SP        | DigIN Slot0.1 | 1047 | Defines the location for applying boost to PID1 setpoint.<br>Contact closure = Boost<br>Open Contact = No Boost                                                                                                                                                                                                           |
| P3.5.1.23 | PID1 Select SP       | DigIN Slot0.1 | 1046 | Defines the location to determine which setpoint is to be used with<br>PID1.<br>Open Contact = Setpoint 1<br>Contact Closure = Setpoint 2                                                                                                                                                                                 |
| P3.5.1.24 | PID2 Start Signal    | DigIN Slot0.2 | 1049 | Parameter will have no effect if PID2 controller is not enabled in the basic menu for PID2.<br>Open Contact = PID2 in stop mode<br>Contact Closure = PID2 regulating                                                                                                                                                      |
| P3.5.1.25 | PID2 Select SP       | DigIN Slot0.1 | 1048 | Defines the location to determine which setpoint is to be used with<br>PID2.<br>Open Contact = Setpoint 1<br>Contact Closure = Setpoint 2                                                                                                                                                                                 |
| P3.5.1.26 | Interlock 1          | DigIN Slot0.1 | 426  | Defines the location for the interlock feedback for motor 1 when using the multi-pump feature.                                                                                                                                                                                                                            |
| P3.5.1.27 | Interlock 2          | DigIN Slot0.1 | 427  | Defines the location for the interlock feedback for motor 2 when using the multi-pump feature.                                                                                                                                                                                                                            |
| P3.5.1.28 | Interlock 3          | DigIN Slot0.1 | 428  | Defines the location for the interlock feedback for motor 3 when using the multi-pump feature.                                                                                                                                                                                                                            |
| P3.5.1.29 | Interlock 4          | DigIN Slot0.1 | 429  | Defines the location for the interlock feedback for motor 4 when using the multi-pump feature.                                                                                                                                                                                                                            |

| Structure | Parameter                                                                                                | Default       | ID   | Description                                                                                                                                                                                                                                                                                                                                           |
|-----------|----------------------------------------------------------------------------------------------------------|---------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P3.5.1.30 | Interlock 5                                                                                              | DigIN Slot0.1 | 430  | Defines the location for the interlock feedback for motor 5 when using the multi-pump feature.                                                                                                                                                                                                                                                        |
| P3.5.1.31 | MotPot UP                                                                                                | DigIN Slot0.1 | 418  | Defines the location for the motor potentiometer reference that will<br>be used to increase the speed.<br>Contact closure = increase speed setpoint.                                                                                                                                                                                                  |
| P3.5.1.32 | MotPot Down                                                                                              | DigIN Slot0.1 | 417  | Defines the location for the motor potentiometer reference that will<br>be used to decrease the speed<br>Contact closure = decrease speed setpoint                                                                                                                                                                                                    |
| P3.5.1.33 | Acc/Dec Time Sel                                                                                         | DigIN Slot0.1 | 408  | Defines the location for accel/decel time selection.<br>Open Contact = <b>Ramp 1 shape</b> (P3.4.1), <b>Accel1</b> (P3.4.2), and<br><b>Decel1</b> (P3.4.3) to be followed<br>Contact Closure = <b>Ramp 2 shape</b> (P3.4.4), <b>Accel2</b> (P3.4.5), and<br><b>Decel 2</b> (P3.4.6) to be followed                                                    |
| P3.5.1.34 | Fieldbus Ctrl                                                                                            | DigIN Slot0.1 | 411  | Defines the location to force control place to fieldbus.<br>Open Contact = I/O Control<br>Contact closure = Fieldbus Control                                                                                                                                                                                                                          |
| P3.5.1.39 | FireMode Activ.Open                                                                                      | DigIN Slot0.2 | 1569 | Defines location of fire mode activation on contact opening.<br>Open Contact = Fire Mode Active<br>Contact Closure = No Action<br><i>Also see Menu Structure P3.16.2.</i>                                                                                                                                                                             |
| P3.5.1.40 | FireMode Activ.Close                                                                                     | DigIN Slot0.1 | 1619 | Defines location of fire mode activation on contact closing.<br>Open Contact = No Action<br>Contact Closure = Fire Mode Active<br><i>Also see Menu Structure P3.16.3.</i>                                                                                                                                                                             |
| P3.5.1.41 | FireMode Reverse                                                                                         | DigIN Slot0.1 | 1618 | Defines location of the reverse command when fire mode is active<br>as defined by <b>FireMode Activ.Open</b> (P3.16.2) or <b>FireMode</b><br><b>Activ.Close</b> (P3.16.3).<br>Open Contact = Forward<br>Contact Closure = Reverse<br><b>NOTE:</b> This function has no effect in normal mode of operation.<br><i>Also see Menu Structure P3.16.6.</i> |
| P3.5.1.42 | Keypad CTRL                                                                                              | DigIN Slot0.1 | 410  | Defines the location monitored to force the Control Place to Keypad.                                                                                                                                                                                                                                                                                  |
| P3.5.1.43 | Reset kWh Counter                                                                                        | DigIN Slot0.1 | 1053 | Defines the location of the kWh trip counter reset.                                                                                                                                                                                                                                                                                                   |
| P3.5.1.44 | Remote Safety 1*                                                                                         | DigIN SlotA.2 | 1814 | Defines the location of the remote safety.                                                                                                                                                                                                                                                                                                            |
| P3.5.1.45 | Remote Safety 2*                                                                                         | DigIN SlotA.3 | 1815 | Defines the location of the remote safety.                                                                                                                                                                                                                                                                                                            |
| P3.5.1.46 | Remote Safety 3*                                                                                         | DigIN Slot0.2 | 1819 | Defines the location of the remote safety.                                                                                                                                                                                                                                                                                                            |
| P3.5.1.47 | Remote Safety 4*                                                                                         | DigIN Slot0.2 | 1820 | Defines the location of the remote safety.                                                                                                                                                                                                                                                                                                            |
| P3.5.1.48 | Remote Safety 5*                                                                                         | DigIN Slot0.2 | 1821 | Defines the location of the remote safety.                                                                                                                                                                                                                                                                                                            |
| P3.5.1.49 | Remote Safety 6*                                                                                         | DigIN Slot0.2 | 1822 | Defines the location of the remote safety.                                                                                                                                                                                                                                                                                                            |
| P3.5.1.50 | Remote Safety 7*                                                                                         | DigIN Slot0.2 | 1823 | Defines the location of the remote safety.                                                                                                                                                                                                                                                                                                            |
| P3.5.1.51 | Remote Safety 8*                                                                                         | DigIN Slot0.2 | 1824 | Defines the location of the remote safety.                                                                                                                                                                                                                                                                                                            |
| P3.5.1.52 | Essential Services*                                                                                      | DigIN Slot0.1 | 1827 | Defines the location of the essential service activation signal.<br><b>NOTE:</b> Requires <b>EssentServEnable</b> (P3.18.5) to be <b>enabled</b> to take effect.                                                                                                                                                                                      |
| P3.5.1.53 | Overload<br>(Accessible when<br><b>Bypass</b> (P3.17.4) =<br><b>Electronic</b> or<br><b>Conventional</b> | DigIN SlotA.5 | 1825 | Defines the location of the bypass overload relay.<br><b>NOTE:</b> Is it not recommended to change this value. The overload<br>relay is factory wired to digital input 5 on all Conventional and<br>Electronic Bypass options.                                                                                                                        |

\*Accessible only when **Bypass** (P3.17.4) is set to a value of **Electronic**.

### Analog Inputs (M3.5.2)

The analog inputs are very flexible to use. Parameters are functions/features that connect to the required analog input terminals. The analog inputs are represented by the slot they exist on. Analog inputs 1 and 2 exist by default on SlotA. For example, **AI 1 Signal Selection** (P3.5.2.1) would connect analog input 1 when set as **AnIN SlotA.1**.



NOTE:

The status of the analog inputs can be monitored in the **Multimonitor** (M2.1) view, or in the I/O and **Hardware (M5)** menu.

The analog inputs settings are presented in the following table:

Table 32: Analog Inputs Settings.

| Structure | Parameter        | Unit | Min               | Max               | Default           | ID  | Description                                                                                                                                                                                                                                                                                                                                                                 |
|-----------|------------------|------|-------------------|-------------------|-------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P3.5.2.1  | Al1 Signal Sel   |      |                   |                   | AnIN SlotA.1      | 377 | Defines the location of the signal to be used as analog input 1.                                                                                                                                                                                                                                                                                                            |
| P3.5.2.2  | AI1 Filter Time  | S    | 0                 | 300               | 1                 | 378 | Defines the time it takes to reach<br>63% of a step change in the analog<br>input signal defined by <b>Al1 Signal</b><br><b>Sel</b> (P3.5.2.1).<br>When this parameter is given a<br>value > 0, the function that filters<br>out disturbances from the incoming<br>analog signal is activated.<br><b>NOTE:</b> Long filtering time makes<br>the regulation response slower. |
| P3.5.2.3  | Al1 Signal Range |      | 0-10V/<br>0-20 mA | 2-10V/<br>4-20 mA | 0-10V/<br>0-20 mA | 379 | Defines the signal range for the<br>analog input defined by <b>Al1 Signal</b><br><b>Sel</b> (P3.5.2.1). Ranges are as<br>follows:<br>0 = 0 to 10 Vdc/0 to 20 mA<br>1 = 2 to 10 Vdc 4 to 20 mA<br><b>NOTE:</b> This setting can be<br>bypassed by using <b>Al1 Custom Min</b><br>(P3.5.2.4) and <b>Al1 Custom Max</b><br>(P3.5.2.5).                                         |
| P3.5.2.4  | AI1 Custom Min   | %    | -160              | 160               | 0                 | 380 | Defines the custom minimum to be<br>used for bypassing the <b>Al1 Signal</b><br><b>Range</b> (P3.5.2.3).                                                                                                                                                                                                                                                                    |
| P3.5.2.5  | AI1 Custom Max   | &    | -160              | 160               | 100               | 381 | Defines the custom maximum to be<br>used for bypassing the <b>Al1 Signal</b><br><b>Range</b> (P3.5.2.3).                                                                                                                                                                                                                                                                    |
| P3.5.2.6  | Al1 Signal Inv   |      | Normal            | Inverted          | Normal            | 387 | Defines the operation of the analog<br>input 1 signal as follows:<br>Normal = 0V or 0 mA = 0%, 10V or<br>20 mA = 100%.<br>Inverted = 0V or 0 mA = 100%, 10V<br>or 20 mA = 0%.                                                                                                                                                                                               |
| P3.5.2.7  | Al2 Signal Sel   |      |                   |                   | AnIN SlotA.2      | 388 | Defines the location of the signal to be used as analog input 2.                                                                                                                                                                                                                                                                                                            |
| P3.5.2.8  | AI2 Filter Time  | S    | 0                 | 300               | 1                 | 389 | Defines the time it takes to reach 63% of a step change in the analog input signal defined by <b>AI2 Signal Sel</b> (P3.5.2.7).                                                                                                                                                                                                                                             |

| Structure | Parameter        | Unit | Min              | Max              | Default           | ID  | Description                                                                                                                                                                                                                                                                                                                        |
|-----------|------------------|------|------------------|------------------|-------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P3.5.2.9  | Al2 Signal Range |      | 0-10V/0-<br>20mA | 2-10V/4-<br>20mA | 0-10V/0-<br>20mA  | 390 | Defines the signal range for the<br>analog input defined by <b>AI2 Signal</b><br><b>Sel</b> (P3.5.2.7). Ranges are as<br>follows:<br>0 = 0 to 10 Vdc/0 to 20 mA<br>1 = 2 to 10 Vdc/ 420 mA<br><b>NOTE:</b> This setting can be<br>bypassed by using <b>AI2 Custom Min</b><br>(P3.5.2.10) and <b>AI2 Custom Max</b><br>(P3.5.2.11). |
| P3.5.2.10 | Al2 Cutom Min    | %    | -160             | 160              | 0                 | 391 | Defines the custom minimum to be<br>used for bypassing the <b>Al2 Signal</b><br><b>Range</b> (P3.5.2.9).                                                                                                                                                                                                                           |
| P3.5.2.11 | Al2 Custom Max   | &    | -160             | 160              | 100               | 392 | Defines the custom maximum to be<br>used for bypassing the <b>AI2 Signal</b><br><b>Range</b> (P3.5.2.9).                                                                                                                                                                                                                           |
| P3.5.2.12 | Al2 Signal Inv   |      | Normal           | Inverted         | Normal            | 398 | Defines the operation of the analog<br>input 2 signal as follows:<br>Normal = 0V or 0 mA = 0%, 10V or<br>20 mA = 100%<br>Inverted = 0V or 0 mA = 100%, 10V<br>or 20 mA = 0%                                                                                                                                                        |
| P3.5.2.13 | AI3 Signal Sel   |      |                  |                  | AnIN Slot0.1      | 141 | Defines the location of the signal to be used as analog input 3.                                                                                                                                                                                                                                                                   |
| P3.5.2.14 | AI3 Filter Time  | S    | 0                | 300              | 1                 | 142 | Defines the time it takes to reach 63% of a step change in the analog input signal defined by <b>AI3 Signal Sel</b> (P3.5.2.13).                                                                                                                                                                                                   |
| P3.5.2.15 | Al3 Signal Range |      | 0-10V/0-<br>20mA | 2-10V/4-<br>20mA | 0-10V/<br>0-20 mA | 143 | Defines the signal P3.5.2.13).<br>Ranges are as follows:<br>0 = 0 to 10 Vdc/0 to 20 mA<br>1 = 2 to 10 Vdc/4 to 20 mA<br><b>NOTE:</b> This setting can be<br>bypassed by using <b>AI3 Custom Min</b><br>(P3.5.2.16) and <b>AI3 Custom Max</b><br>(P3.5.2.17).                                                                       |
| P3.5.2.16 | AI3 Cutom Min    | %    | -160             | 160              | 0                 | 144 | Defines the custom minimum to be<br>used for bypassing the <b>AI3 Signal</b><br><b>Range</b> (P3.5.2.15).                                                                                                                                                                                                                          |
| P3.5.2.17 | AI3 Custom Max   | &    | -160             | 160              | 100               | 145 | Defines the custom maximum to be<br>used for bypassing the <b>AI3 Signal</b><br><b>Range</b> (P3.5.2.15).                                                                                                                                                                                                                          |
| P3.5.2.18 | Al3 Signal Inv   |      | Normal           | Inverted         | Normal            | 151 | Defines the operation of the analog<br>input 3 signal as follows:<br>Normal = 0V or 0 mA = 0%, 10V or<br>20 mA = 100%<br>Inverted = 0V or 0 mA = 100%, 10V<br>or 20m A = 0%                                                                                                                                                        |
| P3.5.2.19 | AI4 Signal Sel   |      |                  |                  | AnIN Slot0.1      | 152 | Defines the location of the signal to be used as analog input 4.                                                                                                                                                                                                                                                                   |
| P3.5.2.20 | Al4 Filter Time  | S    | 0                | 300              | 1                 | 153 | Defines the time it takes to reach 63% of a step change in the analog input signal defined by <b>AI4 Signal Sel</b> (P3.5.2.19).                                                                                                                                                                                                   |

Parameters (M3)

| Structure | Parameter        | Unit | Min               | Max               | Default           | ID  | Description                                                                                                                                                                                                                                                                                         |
|-----------|------------------|------|-------------------|-------------------|-------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P3.5.2.21 | Al4 Signal Range |      | 0-10V/<br>0-20mA  | 2-10V/<br>4-20mA  | 0-10V/<br>0-20mA  | 154 | Defines the signal range for the<br>analog input defined by Al4 Signal<br>Sel (P3.5.2.19). Ranges are as<br>follows:<br>0 = 0 to 10 Vdc/0 to 20 mA<br>1 = 2 to 10 Vdc/4 to 20 mA<br>NOTE: This setting can be<br>bypassed by using Al4 Custom Min<br>(P3.5.2.22) and Al4 Custom Max<br>(P3.5.2.23). |
| P3.5.2.22 | AI4 Cutom Min    | %    | -160              | 160               | 0                 | 155 | Defines the custom minimum to be<br>used for bypassing the <b>AI4 Signal</b><br><b>Range</b> (P3.5.2.21).                                                                                                                                                                                           |
| P3.5.2.23 | AI4 Custom Max   | &    | -160              | 160               | 100               | 156 | Defines the custom maximum to be<br>used for bypassing the <b>AI4 Signal</b><br><b>Range</b> (P3.5.2.21).                                                                                                                                                                                           |
| P3.5.2.24 | AI4 Signal Inv   |      | Normal            | Inverted          | Normal            | 162 | Defines the operation of the analog<br>input 4 signal as follows:<br>Normal = 0V or 0 mA = 0%, 10V or<br>20 mA = 100%<br>Inverted = 0V or 0 mA = 100%, 10V<br>or 20 mA = 0%                                                                                                                         |
| P3.5.2.25 | AI5 Signal Sel   |      |                   |                   | AnIN Slot0.1      | 188 | Defines the location of the signal to be used as analog input 5.                                                                                                                                                                                                                                    |
| P3.5.2.26 | AI5 Filter Time  | S    | 0                 | 300               | 1                 | 189 | Defines the time it takes to reach 63% of a step change in the analog input signal defined by <b>AI5 Signal Sel</b> (P3.5.2.25).                                                                                                                                                                    |
| P3.5.2.27 | AI5 Signal Range |      | 0-10V/<br>0-20 mA | 2-10V/<br>4-20 mA | 0-10V/<br>0-20 mA | 190 | Defines the signal range for the<br>analog input defined by AI5 Signal<br>Sel (P3.5.2.25). Ranges are as<br>follows:<br>0 = 0 to 10 Vdc/0 to 20 mA<br>1 = 2 to 10 Vdc/4 to 20 mA<br>NOTE: This setting can be<br>bypassed by using AI5 Custom Min<br>(P3.5.2.28) and AI5 Custom Max<br>(P3.5.2.29). |
| P3.5.2.28 | AI5 Cutom Min    | %    | -160              | 160               | 0                 | 191 | Defines the custom minimum to be<br>used for bypassing the <b>AI5 Signal</b><br><b>Range</b> (P3.5.2.27).                                                                                                                                                                                           |
| P3.5.2.29 | AI5 Custom Max   | &    | -160              | 160               | 100               | 192 | Defines the custom maximum to be<br>used for bypassing the <b>AI5 Signal</b><br><b>Range</b> (P3.5.2.27).                                                                                                                                                                                           |
| P3.5.2.30 | AI5 Signal Inv   |      | Normal            | Inverted          | Normal            | 198 | Defines the operation of the analog<br>input 5 signal as follows:<br>Normal = 0Vor 0 mA = 0%, 10V or<br>20 mA = 100%<br>Inverted = 0V or 0 mA = 100%, 10V<br>or 20 mA = 0%                                                                                                                          |
| P3.5.2.31 | Al6 Signal Sel   |      |                   |                   | AnIN Slot0.1      | 199 | Defines the location of the signal to be used as analog input 6.                                                                                                                                                                                                                                    |

| Structure | Parameter        | Unit | Min              | Max               | Default           | ID  | Description                                                                                                                                                                                                                                                                                                                            |
|-----------|------------------|------|------------------|-------------------|-------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P3.5.2.32 | Al6 Filter Time  | s    | 0                | 300               | 1                 | 200 | Defines the time it takes to reach 63% of a step change in the analog input signal defined by <b>Al6 Signal Sel</b> (P3.5.2.31).                                                                                                                                                                                                       |
| P3.5.2.33 | Al6 Signal Range |      | 0-10V/<br>0-20mA | 2-10V/<br>4-20 mA | 0-10V/<br>0-20 mA | 201 | Defines the signal range for the<br>analog input defined by <b>Al6 Signal</b><br><b>Sel</b> (P3.5.2.31). Ranges are as<br>follows:<br>0 = 0 to 10 Vdc/0 to 20 mA<br>1 = 2 to 10 Vdc/4 to 20 mA<br><b>NOTE:</b> This setting can be<br>bypassed by using <b>Al6 Custom Min</b><br>(P3.5.2.34) and <b>Al6 Custom Max</b><br>(P3.5.2.35). |
| P3.5.2.34 | Al6 Cutom Min    | %    | -160             | 160               | 0                 | 203 | Defines the custom minimum to be<br>used for bypassing the <b>Al6 Signal</b><br><b>Range</b> (P3.5.2.33).                                                                                                                                                                                                                              |
| P3.5.2.35 | Al6 Custom Max   | &    | -160             | 160               | 100               | 204 | Defines the custom maximum to be<br>used for bypassing the <b>Al6 Signal</b><br><b>Range</b> (P3.5.2.33).                                                                                                                                                                                                                              |
| P3.5.2.36 | Al6 Signal Inv   |      | Normal           | Inverted          | Normal            | 209 | Defines the operation of the analog<br>input 6 signal as follows:<br>Normal = 0V or 0 mA = 0%, 10V or<br>20 mA = 100%<br>Inverted = 0V or 0 mA = 100%, 10V<br>or 20 mA = 0%                                                                                                                                                            |

### Digital Outputs (M3.5.3)

The digital/relay outputs are very flexible to use. Parameters are functions/features that are connected to the required digital/relay output terminals. The digital outputs are configured by the slot they exist on. If no expansion board exists, then the option does not populate with data.



#### NOTE:

The status of the Digital/Relay Outputs can be monitored in the **Multimonitor** (M2.1) view, or in the **I/O and Hardware (M5)** menu.

### Digital outputs, slot B (Basic)

Table 33: Digital Outputs, Slot B.

| Structure  | Parameter     | Unit | Min  | Max          | Default | ID    | Description                                                                                                                                               |
|------------|---------------|------|------|--------------|---------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| P3.5.3.2.1 | RO1 Function  |      | None | Remote Start | Run     | 11001 | See Basic RO Functions Table.                                                                                                                             |
| P3.5.3.2.2 | RO1 ON Delay  | S    | 0    | 320          | 0       | 11002 | Defines the amount of time that will<br>pass before the relay output will<br>energize (ON) after trigger of the<br><b>RO1 Function</b> (P3.5.3.2.1).      |
| P3.5.3.2.3 | RO1 OFF Delay | S    | 0    | 320          | 0       | 11003 | Defines the amount of time that will<br>pass before the relay output will de-<br>energize (OFF) after trigger of the<br><b>RO1 Function</b> (P3.5.3.2.1). |

Parameters (M3)

| Structure  | Parameter     | Unit | Min  | Max          | Default          | ID    | Description                                                                                                                                               |
|------------|---------------|------|------|--------------|------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| P3.5.3.2.4 | RO2 Function  |      | None | Remote Start | General<br>Fault | 11004 | See Basic RO Functions Table.                                                                                                                             |
| P3.5.3.2.5 | RO2 ON Delay  | S    | 0    | 320          | 0                | 11005 | Defines the amount of time that will<br>pass before the relay output will<br>energize (ON) after trigger of the<br><b>RO2 Function</b> (P3.5.3.2.4).      |
| P3.5.3.2.6 | RO2 OFF Delay | S    | 0    | 320          | 0                | 11006 | Defines the amount of time that will<br>pass before the relay output will de-<br>energize (OFF) after trigger of the<br><b>RO2 Function</b> (P3.5.3.2.4). |
| P3.5.3.2.7 | RO3 Function  |      | None | Remote Start | Ready            | 11007 | See Basic RO Functions Table.                                                                                                                             |

### **Basic RO functions**

Table 34: Basic RO Functions.

| Selection | Selection name            | Description                                                                            |  |  |  |
|-----------|---------------------------|----------------------------------------------------------------------------------------|--|--|--|
| 0         | Not used                  |                                                                                        |  |  |  |
| 1         | Ready                     | The variable frequency drive is ready to operate.                                      |  |  |  |
| 2         | Run                       | The variable frequency drive operates (motor is running).                              |  |  |  |
| 3         | General fault             | A fault trip has occurred.                                                             |  |  |  |
| 4         | General fault inverted    | A fault trip has <i>not</i> occurred.                                                  |  |  |  |
| 5         | General alarm             |                                                                                        |  |  |  |
| 6         | Reversed                  | The reverse command has been selected.                                                 |  |  |  |
| 7         | At speed                  | The output frequency has reached the set reference.                                    |  |  |  |
| 8         | Motor regulator activated | One of the limit regulators (for example, current limit or torque limit) is activated. |  |  |  |
| 9         | Preset frequency active   | The preset frequency has been selected with digital input.                             |  |  |  |
| 10        | Keypad control active     | Keypad control mode selected.                                                          |  |  |  |
| 11        | I/O control B active      | I/O control place B selected.                                                          |  |  |  |
| 12        | Limit supervision 1       | Activates if the signal value falls below or exceeds the set supervision               |  |  |  |
| 13        | Limit supervision 2       | limit (P3.8.3 or P3.8.7) depending on the selected function.                           |  |  |  |
| 14        | Start command active      | Start command is active.                                                               |  |  |  |
| 15        | Reserved                  |                                                                                        |  |  |  |
| 16        | Fire mode ON              |                                                                                        |  |  |  |
| 17        | RTC timer 1 control       | Time channel 1 is used.                                                                |  |  |  |
| 18        | RTC timer 2 control       | Time channel 2 is used.                                                                |  |  |  |
| 19        | RTC timer 3 control       | Time channel 3 is used.                                                                |  |  |  |
| 20        | FB Control WordB.13       |                                                                                        |  |  |  |
| 21        | FB Control WordB.14       |                                                                                        |  |  |  |
| 22        | FB Control WordB.15       |                                                                                        |  |  |  |
| 23        | PID1 in Sleep mode        |                                                                                        |  |  |  |

| Selection | Selection name            | Description                                                                                              |
|-----------|---------------------------|----------------------------------------------------------------------------------------------------------|
| 24        | Reserved                  |                                                                                                          |
| 25        | PID1 supervision limits   | PID1 feedback value is beyond supervision limits.                                                        |
| 26        | PID2 supervision limits   | PID2 feedback value is beyond supervision limits.                                                        |
| 27        | Motor 1 control           | Contactor control for <i>Multi-pump</i> function.                                                        |
| 28        | Motor 2 control           | Contactor control for <i>Multi-pump</i> function.                                                        |
| 29        | Motor 3 control           | Contactor control for <i>Multi-pump</i> function.                                                        |
| 30        | Motor 4 control           | Contactor control for <i>Multi-pump</i> function.                                                        |
| 31        | Reserved                  | (Always open.)                                                                                           |
| 32        | Reserved                  | (Always open.)                                                                                           |
| 33        | Reserved                  | (Always open.)                                                                                           |
| 34        | Maintenance warning       |                                                                                                          |
| 35        | Maintenance fault         |                                                                                                          |
| 36        | Thermistor fault          |                                                                                                          |
| 37        | Motor switch              |                                                                                                          |
| 38        | Bypass active             | Selects relay output for the Bypass active signal. This signal is on when the drive is in Bypass mode.   |
| 39        | Bypass running            | Selects relay output terminal for Bypass contactor control.                                              |
| 40        | Drive active              | Selects relay output for the Drive active signal. This signal is on when the drive is in Drive mode.     |
| 41        | Drive output contactor    | Controls the Drives Output contactor.                                                                    |
| 42        | Overload Fault            | Selects relay output for the Overload fault signal. This signal is on when the Overload fault is active. |
| 43        | Essential Services active | Selects relay output for the Essential services signal.                                                  |
| 44        | Auto Bypass active        | Selects relay output for the Auto Bypass active signal                                                   |
| 45        | Interlock Proofing        | Selects relay output for the Interlock Proofing signal.                                                  |
| 46        | Interlock Proofed         | Selects relay output for the Interlock Proofed signal.                                                   |
| 47        | Stop Forced               | Selects relay output for the Local Stop Forced from keypad signal.                                       |
| 48        | Remote Start              | Selects relay output for the Remote Start signal                                                         |

# Slot C (M3.5.3.3)

If an expansion I/O board that contains a digital/relay output exists in slot C, then this section will be populated with parameters to represent that I/O.

| Structure  | Parameter    | Unit | Min  | Мах          | Default | ID    | Description                   |
|------------|--------------|------|------|--------------|---------|-------|-------------------------------|
| P3.5.3.3.1 | RO1 Function |      | None | Remote Start | None    | 12001 | See Basic RO Functions Table. |
| P3.5.3.3.2 | RO2 Function |      | None | Remote Start | None    | 12002 |                               |
| P3.5.3.3.3 | RO3 Function |      | None | Remote Start | None    | 12003 |                               |
| P3.5.3.3.4 | RO4 Function |      | None | Remote Start | None    | 12004 |                               |
| P3.5.3.3.5 | RO5 Function |      | None | Remote Start | None    | 12005 |                               |
| P3.5.3.3.6 | RO6 Function |      | None | Remote Start | None    | 12006 |                               |

#### Table 35: Digital Outputs, Slot C.

### Slot D (M3.5.3.4)

If an expansion I/O board that contains a digital/relay output exists in slot D, then this section will be populated with parameters to represent that I/O.

| Structure  | Parameter    | Unit | Min  | Max          | Default | ID    | Description                   |
|------------|--------------|------|------|--------------|---------|-------|-------------------------------|
| P3.5.3.4.1 | RO1 Function |      | None | Remote Start | None    | 13001 | See Basic RO Functions Table. |
| P3.5.3.4.2 | RO2 Function |      | None | Remote Start | None    | 13002 |                               |
| P3.5.3.4.3 | RO3 Function |      | None | Remote Start | None    | 13003 |                               |
| P3.5.3.4.4 | RO4 Function |      | None | Remote Start | None    | 13004 |                               |
| P3.5.3.4.5 | RO5 Function |      | None | Remote Start | None    | 13005 |                               |
| P3.5.3.4.6 | RO6 Function |      | None | Remote Start | None    | 13006 |                               |

Table 36: Digital Outputs, Slot D.

### Slot E (M3.5.3.5)

If an expansion I/O board that contains a digital/relay output exists in slot E, then this section will be populated with parameters to represent that I/O.

Table 37: Digital Outputs, Slot E.

| Structure  | Parameter    | Unit | Min  | Мах          | Default | ID    | Description                   |
|------------|--------------|------|------|--------------|---------|-------|-------------------------------|
| P3.5.3.5.1 | RO1 Function |      | None | Remote Start | None    | 14001 | See Basic RO Functions Table. |
| P3.5.3.5.2 | RO2 Function |      | None | Remote Start | None    | 14002 |                               |
| P3.5.3.5.3 | RO3 Function |      | None | Remote Start | None    | 14003 |                               |
| P3.5.3.5.4 | RO4 Function |      | None | Remote Start | None    | 14004 |                               |
| P3.5.3.5.5 | RO5 Function |      | None | Remote Start | None    | 14005 |                               |
| P3.5.3.5.6 | RO6 Function |      | None | Remote Start | None    | 14006 |                               |

### Analog Outputs (M3.5.4)

The analog outputs are very flexible to use. Parameters are functions/features that are connected to the required analog output terminals. The analog outputs are configured by the slot they exist on. If no expansion board exists, then the option does not populate with data.

i

**NOTE:** The status of the Analog Outputs can be monitored in the **Multimonitor** (P2.1) view, or in the **I/O and Hardware (M5)** menu.

### Slot A Basic (M3.5.4.1)

Table 38: Analog Outputs, Slot A (Basic).

| Structure  | Parameter       | Unit | Min        | Max            | Default             | ID    | Description                                             |
|------------|-----------------|------|------------|----------------|---------------------|-------|---------------------------------------------------------|
| P3.5.4.1.1 | AO1 Function    |      | 0% Test    | ProcessDataIn8 | Output<br>Frequency | 10050 | See AO Functions Table.                                 |
| P3.5.4.1.2 | AO1 Filter Time | S    | 0          | 300            | 1                   | 10051 | Filter time of analog output signal<br>0 = No filtering |
| P3.5.4.1.3 | AO1 Min Signal  |      | 0 Vdc/0 mA | 2 Vdc/4 mA     | 0 Vdc/0 mA          | 10052 | Settings:<br>0 = 0 Vdc/0 mA<br>1 = 2 Vdc/4 mA           |
| P3.5.4.1.4 | AO1 MinScale    |      | Varies     | Varies         | Varies              | 10053 | Min Scale in process unit.                              |
| P3.5.4.1.5 | AO1 MaxScale    |      | Varies     | Varies         | Varies              | 10054 | Max Scale in process unit                               |

Table 39: Analog Output Functions.

|    | Settings          | Description                                                                |  |  |  |  |  |  |  |
|----|-------------------|----------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 0  | 0% Test           | AO is not used. 0 output.                                                  |  |  |  |  |  |  |  |
| 1  | 100% Test         | AO is max. 10 Vdc or 20 mA output.                                         |  |  |  |  |  |  |  |
| 2  | Output Frequency  | Track the Output Frequency based on 0 to Max Frequency (P3.3.2).           |  |  |  |  |  |  |  |
| 3  | Freq Reference    | Track the Frequency Reference base on <b>0 to Max Frequency</b> (P3.3.2).  |  |  |  |  |  |  |  |
| 4  | Motor Speed       | Track the Motor Speed based on <b>0 to Motor Nom Speed</b> (P3.1.1.3).     |  |  |  |  |  |  |  |
| 5  | Output Current    | Track the Output Current based on <b>0 to Motor Nom Currnt</b> (P3.1.1.4). |  |  |  |  |  |  |  |
| 6  | Motor Torque      | Track the Motor Torque based on 0 to TnMotor.                              |  |  |  |  |  |  |  |
| 7  | Motor Power       | Track the Motor Power based on 0 to PnMotor.                               |  |  |  |  |  |  |  |
| 8  | Motor Voltage     | Track the Motor Voltage based on 0 to VnMotor.                             |  |  |  |  |  |  |  |
| 9  | DC Link Voltage   | Track the DC Link Voltage based on 0 - 1000 Vdc.                           |  |  |  |  |  |  |  |
| 10 | PID 1 Output      | Track the PID1 Output based on 0 - 100%                                    |  |  |  |  |  |  |  |
| 11 | PID 2 Output      | Track the PID2 Output based on 0 - 100%.                                   |  |  |  |  |  |  |  |
| 12 | Process Data In 1 | Track the Process Data In 1 where 5000 = 50.00%.                           |  |  |  |  |  |  |  |
| 13 | Process Data In 2 | Track the Process Data In 2 where 5000 = 50.00%.                           |  |  |  |  |  |  |  |
| 14 | Process Data In 3 | Track the Process Data In 3 where 5000 = 50.00%.                           |  |  |  |  |  |  |  |
| 15 | Process Data In 4 | Track the Process Data In 4 where 5000 = 50.00%.                           |  |  |  |  |  |  |  |
| 16 | Process Data In 5 | Track the Process Data In 5 where 5000 = 50.00%.                           |  |  |  |  |  |  |  |
| 17 | Process Data In 6 | Track the Process Data In 6 where 5000 = 50.00%.                           |  |  |  |  |  |  |  |
| 18 | Process Data In 7 | Track the Process Data In 7 where 5000 = 50.00%.                           |  |  |  |  |  |  |  |
| 19 | Process Data In 8 | Track the Process Data In 8 where 5000 = 50.00%.                           |  |  |  |  |  |  |  |

### Slot C (M3.5.4.3)

If an expansion I/O board that contains an analog output exists in slot C, then this section will be populated with parameters to represent that I/O.

| Structure   | Parameter       | Unit | Min        | Max Defa       |            | ID    | Description                                             |
|-------------|-----------------|------|------------|----------------|------------|-------|---------------------------------------------------------|
| P3.5.4.3.1  | AO1 Function    |      | 0% Test    | ProcessDataIn8 | 0% Test    | 12050 | See AO Functions Table.                                 |
| P3.5.4.3.2  | AO1 Filter Time | S    | 0          | 300            | 1          | 12051 | Filter time of analog output signal<br>0 = No filtering |
| P3.5.4.3.3  | AO1 Min Signal  |      | 0 Vdc/0 mA | 2 Vdc/4 mA     | 0 Vdc/0 mA | 12052 | Settings:<br>0 = 0 Vdc/0 mA<br>1 = 2 Vdc/4 mA           |
| P3.5.4.3.4  | AO1 MinScale    |      | Varies     | Varies         | Varies     | 12053 | Min Scale in process unit.                              |
| P3.5.4.3.5  | AO1 MaxScale    |      | Varies     | Varies         | Varies     | 12054 | Max Scale in process unit                               |
| P3.5.4.3.6  | AO2 Function    |      | 0% Test    | ProcessDataIn8 | 0% Test    | 12055 | See AO Functions Table.                                 |
| P3.5.4.3.7  | AO2 Filter Time | S    | 0          | 300            | 1          | 12056 | Filter time of analog output signal<br>0 = No filtering |
| P3.5.4.3.8  | AO2 Min Signal  |      | 0 Vdc/0 mA | 2 Vdc/4 mA     | 0 Vdc/0 mA | 12057 | Settings:<br>0 = 0 Vdc/0 mA<br>1 = 2 Vdc/4 mA           |
| P3.5.4.3.9  | AO2 MinScale    |      | Varies     | Varies         | Varies     | 12058 | Min Scale in process unit.                              |
| P3.5.4.3.10 | AO2 MaxScale    |      | Varies     | Varies         | Varies     | 12059 | Max Scale in process unit                               |

Table 40: Analog Outputs, Slot C.

### Slot D (M3.5.4.4)

If an expansion I/O board that contains an analog output exists in slot C, then this section will be populated with parameters to represent that I/O.

| Structure   | Parameter       | Unit | Min        | Max Default    |            | ID    | Structure                                               |
|-------------|-----------------|------|------------|----------------|------------|-------|---------------------------------------------------------|
| P3.5.4.4.1  | AO1 Function    |      | 0% Test    | ProcessDataIn8 | 0% Test    | 13050 | See AO Functions Table.                                 |
| P3.5.4.4.2  | AO1 Filter Time | s    | 0          | 300            | 1          | 13051 | Filter time of analog output signal<br>0 = No filtering |
| P3.5.4.4.3  | AO1 Min Signal  |      | 0 Vdc/0 mA | 2 Vdc/4 mA     | 0 Vdc/0 mA | 13052 | Settings:<br>0 = 0 Vdc/ mA<br>1 = 2 Vdc/4 mA            |
| P3.5.4.4.4  | AO1 MinScale    |      | Varies     | Varies         | Varies     | 13053 | Min Scale in process unit.                              |
| P3.5.4.4.5  | AO1 MaxScale    |      | Varies     | Varies         | Varies     | 13054 | Max Scale in process unit                               |
| P3.5.4.4.6  | AO2 Function    |      | 0% Test    | ProcessDataIn8 | 0% Test    | 13055 | See AO Functions Table.                                 |
| P3.5.4.4.7  | AO2 Filter Time | s    | 0          | 300            | 1          | 13056 | Filter time of analog output signal<br>0 = No filtering |
| P3.5.4.4.8  | AO2 Min Signal  |      | 2 Vdc/0 mA | 2 Vdc/4 mA     | 0 Vdc/0 mA | 13057 | Settings:<br>0 = 0 Vdc/0 mA<br>1 = 2 Vdc/4 mA           |
| P3.5.4.4.9  | AO2 MinScale    |      | Varies     | Varies         | Varies     | 13058 | Min Scale in process unit.                              |
| P3.5.4.4.10 | AO2 MaxScale    |      | Varies     | Varies         | Varies     | 13059 | Max Scale in process unit                               |

Table 41: Analog Outputs, Slot D.

# Slot E (M3.5.4.5)

If an expansion I/O board that contains an analog output exists in slot C, then this section will be populated with parameters to represent that I/O.

| Structure   | Parameter       | Unit | Min        | Max Default    |            | ID    | Description                                             |
|-------------|-----------------|------|------------|----------------|------------|-------|---------------------------------------------------------|
| P3.5.4.5.1  | AO1 Function    |      | 0% Test    | ProcessDataIn8 | 0% Test    | 14050 | See Table AO Functions.                                 |
| P3.5.4.5.2  | AO1 Filter Time | s    | 0          | 300            | 1          | 14051 | Filter time of analog output signal<br>0 = No filtering |
| P3.5.4.5.3  | AO1 Min Signal  |      | 0 Vdc/0 mA | 2 Vdc/4 mA     | 0 Vdc/0 mA | 14052 | Settings:<br>0 = 0 Vdc/0 mA<br>1 = 2 Vdc/4 mA           |
| P3.5.4.5.4  | AO1 MinScale    |      | Varies     | Varies         | Varies     | 14053 | Min Scale in process unit.                              |
| P3.5.4.5.5  | AO1 MaxScale    |      | Varies     | Varies         | Varies     | 14054 | Max Scale in process unit                               |
| P3.5.4.5.6  | AO2 Function    |      | 0% Test    | ProcessDataIn8 | 0% Test    | 14055 | SeeTable AO Functions.                                  |
| P3.5.4.5.7  | AO2 Filter Time | s    | 0          | 300            | 1          | 14056 | Filter time of analog output signal<br>0 = No filtering |
| P3.5.4.5.8  | AO2 Min Signal  |      | 0 Vdc/0 mA | 2 Vdc/4 mA     | 0 Vdc/0 mA | 14057 | Settings:<br>0 = 0 Vdc/0 mA<br>1 = 2 Vdc/4 mA           |
| P3.5.4.5.9  | AO2 MinScale    |      | Varies     | Varies         | Varies     | 14058 | Min Scale in process unit.                              |
| P3.5.4.5.10 | AO2 MaxScale    |      | Varies     | Varies         | Varies     | 14059 | Max Scale in process unit                               |

Table 42: Analog Outputs, Slot E.

### Fieldbus Data Mapping (M3.6)

Fieldbus data In/Out mappings provide further information over the fieldbus that is not available in the current object mappings. Data sent to the fieldbus can be chosen with a parameter ID number, and the data is scaled to an unsigned 16-bit format according to the format on the keypad. For example, 25.5 on the keypad becomes 255 over the fieldbus data mapping.

The fieldbus data mapping settings are presented in the following table:

| Structure | Parameter        | Unit | Min | Max   | Default              | ID  | Description                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------|------------------|------|-----|-------|----------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P3.6.1    | FB DataOut 1 Sel |      | 0   | 35000 | Output Frequency (1) | 852 | Defines the data to be sent to the<br>fieldbus as FB DataOut 1. This is<br>chosen with the parameter ID. The<br>data is scaled to unsigned 16-bit<br>format according to the format on<br>the keypad.<br>For example, this parameter is set<br>to a value of 1 which is <b>Output</b><br><b>Frequency</b> (P2.2.1) ID <b>1</b> . If the<br>keypad is displaying 25.5 Hz, then<br>the data over the FB will be 255.<br>BACnet = AV_20<br>P1 = Subpoint 50 |
| P3.6.2    | FB DataOut 2 Sel |      | 0   | 35000 | Motor Speed (2)      | 853 | Defines the data to be sent to the<br>fieldbus as FB DataOut 2. See<br><b>FBDataOut 1 Sel</b> (P3.6.1) for<br>further details.<br>BACnet = AV_21<br>P1 = Subpoint 51                                                                                                                                                                                                                                                                                     |
| P3.6.3    | FB DataOut 3 Sel |      | 0   | 35000 | Current (45)         | 854 | Defines the data to be sent to the<br>fieldbus as FB DataOut 3. Refer to<br><b>FBDataOut 1 Sel</b> (P3.6.1) for<br>further details.<br>BACnet = AV_22<br>P1 = Subpoint 52                                                                                                                                                                                                                                                                                |
| P3.6.4    | FB DataOut 4 Sel |      | 0   | 35000 | Torque (4)           | 855 | Defines the data to be sent to the<br>fieldbus as FB DataOut 4. See<br><b>FBDataOut 1 Sel</b> (P3.6.1) for<br>further details.<br>BACnet = AV_23<br>P1 = Subpoint 53                                                                                                                                                                                                                                                                                     |
| P3.6.5    | FB DataOut 5 Sel |      | 0   | 35000 | Power (5)            | 856 | Defines the data to be sent to the<br>fieldbus as FB DataOut 5. Refer to<br><b>FBDataOut 1 Sel</b> (P3.6.1) for<br>further details.<br>BACnet = AV_24<br>P1 = Subpoint 54                                                                                                                                                                                                                                                                                |
| P3.6.6    | FB DataOut 6 Sel |      | 0   | 35000 | Voltage (6)          | 857 | Defines the data to be sent to the<br>fieldbus as FB DataOut 6. See<br><b>FBDataOut 1 Sel</b> (P3.6.1) for<br>further details.<br>BACnet = AV_25<br>P1 = Subpoint 55                                                                                                                                                                                                                                                                                     |
| P3.6.7    | FB DataOut 7 Sel |      | 0   | 35000 | DC Link (7)          | 858 | Defines the data to be sent to the<br>fieldbus as FB DataOut 7. See<br><b>FBDataOut 1 Sel</b> (P3.6.1) for<br>further details.<br>BACnet = AV_26<br>P1 = Subpoint 56                                                                                                                                                                                                                                                                                     |

#### Table 43: Fieldbus Data Mapping Settings.

| Structure | Parameter        | Unit | Min      | Max     | Default         | ID   | Description                                                                                                                                                          |
|-----------|------------------|------|----------|---------|-----------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P3.6.8    | FB DataOut 8 Sel |      | 0        | 35000   | Last Fault (37) | 859  | Defines the data to be sent to the<br>fieldbus as FB DataOut 8. See<br><b>FBDataOut 1 Sel</b> (P3.6.1) for<br>further details.<br>BACnet = AV_27<br>P1 = Subpoint 57 |
| P3.6.9    | FB Run Enable    |      | Disabled | Enabled | Enabled         | 1829 | Defines the run enable when in<br>fieldbus control.<br><b>NOTE</b> : When fieldbus is not in use,<br>see <b>Run Enable</b> (P3.5.1.11)                               |

For example, to provide the PID1 Feedback over the fieldbus. Complete the following: Set Fieldbus Data Out 1 Selection (P3.6.1) can be set to a value of 21 [which represents PID Feedback (P2.4.2)].

### Prohibited Frequencies (M3.7)

In some systems it may be necessary to avoid certain frequencies due to mechanical resonance problems. By setting up prohibited frequencies, these ranges are skipped.

The prohibited frequencies settings are presented in the following table:

Table 44: Prohibited Frequencies Settings.

| Structure | Parameter        | Unit | Min | Max | Default | ID  | Description                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------|------------------|------|-----|-----|---------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P3.7.1    | Range 1 Low Lim  | Hz   | 0   | 320 | 0       | 509 | Defines the low limit of the first<br>prohibited frequency. The drive will<br>change its accel/decel time by the<br><b>RampTimeFactor</b> (P3.7.7) while<br>within the range of this low limit and<br>the <b>Range 1 High Lim</b> (P3.7.2).<br><b>NOTE:</b> The drive will not control<br>within these ranges, it will either be<br>faster or slower, but never within<br>the range defined.  |
| P3.7.2    | Range 1 High Lim | Hz   | 0   | 320 | 0       | 510 | Defines the high limit of the first<br>prohibited frequency. The drive will<br>change its accel/decel time by the<br><b>RampTimeFactor</b> (P3.7.7) while<br>within the range of this high limit<br>and the <b>Range 1 Low Lim</b> (P3.7.1).<br><b>NOTE:</b> The drive will not control<br>within these ranges; it will either be<br>faster or slower, but never within<br>the range defined. |
| P3.7.3    | Range 2 Low Lim  | Hz   | 0   | 320 | 0       | 511 | Defines the low limit of the second<br>prohibited frequency. See <b>Range 1</b><br><b>Low Lim</b> (P3.7.1) for further details.                                                                                                                                                                                                                                                               |
| P3.7.4    | Range 2 High Lim | Hz   | 0   | 320 | 0       | 512 | Defines the high limit of the second<br>prohibited frequency. See <b>Range 1</b><br><b>High Lim</b> (P3.7.2) for further details.                                                                                                                                                                                                                                                             |
| P3.7.5    | Range 3 Low Lim  | Hz   | 0   | 320 | 0       | 513 | Defines the low limit of the third<br>prohibited frequency. See <b>Range 1</b><br><b>Low Lim</b> (P3.7.1) for further details.                                                                                                                                                                                                                                                                |
| P3.7.6    | Range 3 High Lim | Hz   | 0   | 320 | 0       | 514 | Defines the high limit of the third<br>prohibited frequency. See <b>Range 1</b><br><b>High Lim</b> (P3.7.2) for further details.                                                                                                                                                                                                                                                              |
| P3.7.7    | RampTimeFactor   |      | 0.1 | 10  | 1       | 518 | Defines the multiplier of the<br>currently selected ramp time (accel<br>time 1/2 and decel time 1/2)<br>between the prohibited frequency<br>limits.                                                                                                                                                                                                                                           |

#### Example:

A resonance noise is occurring on an air handling unit when the drive speed is around 75% (45 Hz). Complete the following:

- 1. Set Prohibited Frequency Range 1 Low Limit (P3.7.1) to a value of 44.5.
- 2. Set Prohibited Frequency Range 1 High Limit (P3.7.2) to a value of 45.5.

# i

#### NOTE:

The drive will still ramp through these speeds, but will not control within this range. The speed at which the drive ramps through this range can be changed by the **Ramp Time Factor** (P3.7.7) to make it faster. For example. If **Acceleration Time 1** (P3.4.2) is set to a value of 120, **Minimum Frequency** (P3.3.1) is set to a value of 0, and **Maximum Frequency** (P3.3.2) is set to a value of 60; then it takes 2 seconds to speed up 1 hertz. **If Ramp Time Factor** (P3.7.7) is set to a value of 2, then it takes 1 second to speed up 1 hertz when within the range as defined by **Prohibited Frequency Range 1 Low Limit** (P3.7.1) and

Prohibited Frequency Range 1 High Limit (P3.7.2)

# Limit supervisions (M3.8)

Two signal values can be selected for supervision. High or low limits are supervised. The limit supervisions settings are presented in the following table:

| Structure | Parameter     | Unit   | Min                 | Max            | Default          | ID   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------|---------------|--------|---------------------|----------------|------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P3.8.1    | Superv1 Item  |        | Output<br>Frequency | Analog Input 2 | Output Frequency | 1431 | Defines the drive data to supervise for<br><b>Superv1 Mode</b> (P3.8.2) in accordance<br>with the <b>Superv1 Limit</b> (P3.8.3) with<br>deadband defined with <b>Superv1 Hyst</b><br>(P3.8.4)<br>0 = Output Frequency<br>1 = Frequency Reference<br>2 = Motor Current<br>3 = Motor Torque<br>4 = Motor Power<br>5 = DC-Link Voltage<br>6 = Analog Input 1<br>7 = Analog Input 2<br><b>NOTE:</b> A relay output can be triggered<br>in accordance with this supervised item.<br>Set Relay Output Function to a value of<br>Superv1 Lmt. |
| P3.8.2    | Superv1 Mode  |        | Not Used            | High Limit     | Not Used         | 1432 | Defines the type of supervision of the<br><b>Superv1 Item</b> (P3.8.1) in accordance<br>with the <b>Superv1 Limit</b> (P3.8.3) with<br>deadband defined with <b>Superv1 Hyst</b><br>(P3.8.4)<br>0 = Not used<br>1 = Low Limit Supervision<br>2 = High Limit Supervision                                                                                                                                                                                                                                                                |
| P3.8.3    | Superv1 Limit | Varies | -200                | 200            | 25               | 1433 | Defines the limit that <b>Superv1 Item</b><br>(P3.8.1) is compared to, which<br>determines if <b>Superv1 Mode</b> (P3.8.2)<br>has occurred. Unit of measure displays<br>automatically.                                                                                                                                                                                                                                                                                                                                                 |
| P3.8.4    | Superv1 Hyst  | Varies | -200                | 200            | 5                | 1434 | Defines the deadband of <b>Superv1 Item</b> (P3.8.1).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

Table 45: Limit Supervisions Settings.

Parameters (M3)

| Structure | Parameter     | Unit   | Min                 | Max            | Default          | ID   | Description                                                                                                                                                                                                                                                                                                                                                                 |
|-----------|---------------|--------|---------------------|----------------|------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P3.8.5    | Superv2 Item  |        | Output<br>Frequency | Analog Input 2 | Output Frequency | 1435 | Defines the drive data to supervise for<br>Superv2 Mode (P3.8.6) in accordance<br>with the Superv2 Limit (P3.8.7) with<br>deadband defined with Superv2 Hyst<br>(P3.8.8)<br>Refer to Superv1 Item (P3.8.1) for<br>settings.<br>NOTE: A relay output can be triggered<br>in accordance with this supervised item.<br>Set Relay Output Function to a value of<br>Superv2 Lmt. |
| P3.8.6    | Superv2 Mode  |        | Not Used            | High Limit     | Not Used         | 1436 | Defines the type of supervision of the<br><b>Superv2 Item</b> (P3.8.5) in accordance<br>with the <b>Superv2 Limit</b> (P3.8.7) with<br>deadband defined with <b>Superv2 Hyst</b><br>(P3.8.8)<br>0 = Not used<br>1 = Low Limit Supervision<br>2 = High Limit Supervision                                                                                                     |
| P3.8.7    | Superv2 Limit | Varies | -200                | 200            | 25               | 1437 | Defines the limit that <b>Superv2 Item</b><br>(P2.8.5) is compared to, which<br>determines if <b>Superv2 Mode</b> (P3.8.6)<br>has occurred. Unit of measure appears<br>automatically.                                                                                                                                                                                       |
| P3.8.8    | Superv2 Hyst  | Varies | -200                | 200            | 5                | 1438 | Defines the deadband of <b>Superv1 Item</b> (P3.8.5).                                                                                                                                                                                                                                                                                                                       |

#### Example:

To energize relay output 1 when the motor output current has reached 4 amps and have the drive act like a current transducer (CT). Complete the following:

- 1. Set Supervision Item 1 Selection (P3.8.1) to a value of Motor Current.
- 2. Set Supervision Item 1 Mode (P3.8.2) to a value of High Limit.
- 3. Set Supervision Item 1 Limit (P3.8.3) to a value of 4.
- 4. Set RO1 Function (P3.5.3.2.1) to a value of LimSuperv1.

# Protections (M3.9)

Protections define the way the drive is to respond to conditions that can occur in the drive.

Table 46: Protections Settings.

| Structure | Parameter        | Unit | Min          | Max          | Default      | ID  | Description                                                                                                                                                                                                                                                                    |
|-----------|------------------|------|--------------|--------------|--------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P3.9.1    | AI Low Fault     |      | No Action    | Fault, Coast | No Action    | 700 | Defines the response to a low analog input<br>signal. Response settings are as follows:<br>0 = No Action<br>1 = Alarm<br>2 = Alarm and run to <b>PresetAlarmFreq</b><br>(P3.3.19)<br>3 = Fault ( <i>stop according to stop mode</i> )<br>4 = Fault ( <i>stop by coasting</i> ) |
| P3.9.2    | External Fault   |      | No Action    | Fault, Coast | Fault        | 701 | Defines the response to activation of an<br>Ext Fault Close (P3.5.1.7) or Ext Fault<br>Open (P3.5.1.8). Response settings are as<br>follows:<br>0 = No Action<br>1 = Alarm<br>2 = Fault (stop according to stop mode)<br>3 = Fault (stop by coasting)                          |
| P3.9.3    | InputPhaseFault  |      | 3-phase      | 1-phase      | 3-phase      | 730 | Defines the input phase support.<br>0 = 3-phase support<br>1 = 1-phase support<br><b>NOTE</b> : If single phase supply is used, 1-<br>phase support must be selected.                                                                                                          |
| P3.9.4    | Undervoltage Flt |      | Fault Stored | No History   | Fault Stored | 727 | Defines if the under-voltage fault is stored<br>in the fault history or not.<br>0 = Fault Stored<br>1 = No History                                                                                                                                                             |
| P3.9.5    | OutputPhase FIt  |      | No Action    | Fault, Coast | Fault        | 702 | Defines the response to an output phase<br>loss. Response settings are as follows:<br>0 = No Action<br>1 = Alarm<br>2 = Fault (stop according to stop mode)<br>3 = Fault (stop by coasting)                                                                                    |
| P3.9.6    | Motor Therm Prot |      | No Action    | Fault, Coast | Fault        | 704 | Defines the response to a motor thermal<br>protection. Response settings are as<br>follows:<br>0 = No Action<br>1 = Alarm<br>2 = Fault (stop according to stop mode)<br>3 = Fault (stop by coasting)                                                                           |
| P3.9.7    | MotAmbient Temp  | °F   | -4           | 212          | 104          | 705 | Defines the ambient temperature that is to generate a response to a Motor Thermal Protection fault as defined by <b>Motor Therm Prot</b> (P3.9.6.                                                                                                                              |
| P3.9.8    | ZeroSpeedCooling | %    | 5            | 150          | 60           | 706 | Defines the cooling factor at zero speed in<br>relation to the point where the motor is<br>running at nominal speed without external<br>cooling.                                                                                                                               |
| P3.9.9    | ThermTimeConst   | min  | 1            | 200          | Varies       | 707 | The time constant is the time within which<br>the calculated thermal stage has reached<br>63% of its final value.                                                                                                                                                              |
| P3.9.10   | MotThermLoadbil  | %    | 0            | 150          | 100          | 708 | Motor thermal loadability states how much the motor can be thermally loaded.                                                                                                                                                                                                   |

72 | 180
### Chapter 4 - Parameters and Menu Structure

Parameters (M3)

| Structure | Parameter        | Unit | Min       | Max                            | Default   | ID  | Description                                                                                                                                                                                                                                                                                                                           |
|-----------|------------------|------|-----------|--------------------------------|-----------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P3.9.11   | MotorStall Flt   |      | 0         | 3                              | 0         | 709 | Defines the response to a motor stall.<br>Response settings are as follows:<br>0 = No Action<br>1 = Alarm<br>2 = Fault (stop according to stop mode)<br>3 = Fault (stop by coasting)                                                                                                                                                  |
| P3.9.12   | Stall Current    | A    | 0         | 2*IH                           | IH        | 710 | For a stall stage to occur, the current must have exceeded this limit.                                                                                                                                                                                                                                                                |
| P3.9.13   | Stall Time Limit | s    | 1         | 120                            | 15        | 711 | This is the maximum time allowed for a stall stage.                                                                                                                                                                                                                                                                                   |
| P3.9.14   | Stall Freq.Limit | Hz   | 1         | Parameter<br>P1.9 or<br>P3.3.2 | 25        | 712 | For a stall stage to occur, the output frequency must have remained below this limit for a certain time.                                                                                                                                                                                                                              |
| P3.9.15   | Underload Flt    |      | 0         | 3                              | 0         | 713 | Defines the response to an underload.<br>Response settings are as follows:<br>0 = No Action<br>1 = Alarm<br>2 = Fault ( <i>stop according to stop mode</i> )<br>3 = Fault ( <i>stop by coasting</i> )                                                                                                                                 |
| P3.9.16   | UL FieldweakLoad | %    | 10        | 150                            | 50        | 714 | This parameter gives the value for the min torque allowed when the output frequency is above the field weakening point.                                                                                                                                                                                                               |
| P3.9.17   | UL ZeroFreq.Load | %    | 5         | 150                            | 10        | 715 | This parameter gives the value for the min torque allowed with zero frequency.                                                                                                                                                                                                                                                        |
| P3.9.18   | UL Time Limit    | s    | 2         | 600                            | 20        | 716 | This is the maximum time allowed for an underload state to exist.                                                                                                                                                                                                                                                                     |
| P3.9.19   | FieldbusComm Flt |      | No Action | 4                              | Fault     | 733 | Defines the response to a fieldbus<br>communications signal loss. Response<br>settings are as follows:<br>0 = No Action<br>1 = Alarm<br>2 = Alarm and run to <b>PresetAlarmFreq</b><br>(P3.3.19)<br>3 = Fault ( <i>stop according to stop mode</i> )<br>4 = Fault ( <i>stop by coasting</i> )                                         |
| P3.9.20   | SlotComm Flt     |      | No Action | Fault, Coast                   | Fault     | 734 | Defines the response to an option card slot<br>communications failure. Response settings<br>are as follows:<br>0 = No Action<br>1 = Alarm<br>2 = Fault (stop according to stop mode)<br>3 = Fault (stop by coasting)                                                                                                                  |
| P3.9.21   | Thermistor Fault |      | No Action | Fault, Coast                   | No Action | 732 | Defines the response to a thermistor<br>failure. Response settings are as follows:<br>0 = No Action<br>1 = Alarm<br>2 = Fault (stop according to stop mode)<br>3 = Fault (stop by coasting)<br><b>NOTE</b> : It is recommend to set to a value of<br>Fault (according to stop mode) if a BT300-<br>OPT-B4-V option card is installed. |

| Structure | Parameter          | Unit | Min       | Max              | Default   | ID    | Description                                                                                                                                                                                                                                                                                                                                           |
|-----------|--------------------|------|-----------|------------------|-----------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P3.9.22   | PID1 Supervision   |      | No Action | Fault, Coast     | Fault     | 749   | Defines the response to a PID1 fault.<br>Response settings are as follows:<br>0 = No Action<br>1 = Alarm<br>2 = Fault (stop according to stop mode)<br>3 = Fault (stop by coasting)                                                                                                                                                                   |
| P3.9.23   | PID2 Supervision   |      | No Action | Fault, Coast     | Fault     | 757   | Defines the response to a PID2 fault.<br>Response settings are as follows:<br>0 = No Action<br>1 = Alarm<br>2 = Fault (stop according to stop mode)<br>3 = Fault (stop by coasting)                                                                                                                                                                   |
| P3.9.25   | TempFault Signal   |      | Not Used  | TempInput1<br>-3 | Not Used  | 739   | Defines the source signal to monitor for<br><b>TempAlarm Limit</b> (P3.9.26) and <b>TempFault</b><br><b>Limit</b> (P3.9.27) triggering.<br>Settings:<br>0 = Not used<br>1 = Temperature Input 1<br>2 = Temperature Input 2<br>3 = Temperature Input 3<br>4 = Temperature Inputs 1 & 2<br>5 = Temperature Inputs 2 & 3<br>6 = Temperature Inputs 1 & 3 |
| P3.9.26   | TempAlarm Limit    |      | -30       | 200              | 130       | 741   | Defines the temperature that <b>TempFault</b><br><b>Signal</b> (P3.9.25) must reach for triggering<br>an alarm.                                                                                                                                                                                                                                       |
| P3.9.27   | TempFault Limit    |      | -30       | 200              | 155       | 742   | Defines the temperature that <b>TempFault</b><br><b>Signal</b> (P3.9.25) must reach for triggering a<br>fault.                                                                                                                                                                                                                                        |
| P3.9.28   | TempFault Response |      | No Action | Fault, Coast     | Fault     | 740   | Defines the response action when<br><b>TempFault Signal</b> (P3.9.25) has past<br><b>TempFault Limit</b> (P3.9.27). Response<br>settings are as follows:<br>0 = No Action<br>1 = Alarm<br>2 = Fault (stop according to stop mode)<br>3 = Fault (stop by coasting)                                                                                     |
| P3.9.29   | Run Interlock Flt  |      | No Action | Fault, Coast     | No Action | 14061 | Defines the response action to a Run<br>Interlock Fault. This requires <b>Mot. Interlock</b><br><b>Start</b> (P3.2.11) to be enabled, <b>Run</b><br><b>Interlock 1</b> (P3.5.1.12) or <b>Run Interlock 2</b><br>(P3.5.1.13) to be defined to a digital input<br>and a value defined for <b>Run Interlock Proof</b><br>(P3.2.13) other than 0.         |

## Response to external fault (P3.9.2)

An alarm message or a fault action and message is generated by an external fault signal in one of the programmable digital inputs (DI3 by default) using parameters **Ex Fault Close** (P3.5.1.7) and **Ex Fault Open** (P3.5.1.8). The information can also be programmed into any of the relay outputs.

## Motor thermal protection (P3.9.6 through P3.9.10)

The motor thermal protection protects the motor from overheating. The drive is capable of supplying higher than nominal current to the motor. If the load requires this high current, there is a risk that the motor will thermally

overload. This commonly happens at low frequencies. At low frequencies, the cooling effect of the motor is reduced as well as its capacity. If the motor is equipped with an external fan, the load reduction at low speeds is small.

The motor thermal protection is based on a calculated model and uses the output current of the drive to determine the load on the motor. The motor thermal protection can be adjusted with parameters. The thermal current IT specifies the load current above which the motor is overloaded. This current limit is a function of the output frequency.

The thermal stage of the motor can be monitored on the keypad display.



#### NOTE:

The calculated model does not protect the motor if the airflow to the motor is reduced by a blocked air intake grill. The model starts from zero if the control board is powered off

### Motor thermal zero speed cooling (P3.9.8)

Defines the cooling factor at zero speed in relation to the point where the motor is running at nominal speed without external cooling. See the Table *Protections Settings* in the *Protections (M3.9)* section.

The default value is set assuming that there is no external fan cooling the motor. If an external fan is used this parameter can be set to 90% (or even higher).

If you change Motor nominal current (P3.1.1.4), this parameter is automatically restored to the default value.

Setting this parameter does not affect the maximum output current of the drive which is determined by **Current Limit** (P3.1.1.7) alone.

The corner frequency for the thermal protection is 70% of the Motor nominal frequency (P3.1.1.2).



Figure 18: Motor thermal current IT curve.

### Motor thermal time constant (P3.9.9)

The time constant is the time within which the calculated thermal stage has reached 63% of its final value. The bigger the frame and/or the slower the speed of the motor, the longer the time constant.

The motor thermal time is specific to the motor design and it varies between different motor manufacturers. The default value of the parameter varies from size to size.

If the motor's t6-time (t6 is the time in seconds the motor can safely operate at six times the rated current) is known (given by the motor manufacturer), the time constant parameter can be set based on it. As a rule of thumb, the motor thermal time constant in minutes is equal to 2\*t6. If the drive is in stop stage, the time constant is internally increased to three times the set parameter value. The cooling in stop stage is based on convection and the time constant is increased. See Figure *Motor Temperature Calculation*.

### Motor thermal load (P3.9.10)

Setting the value to 130% means that the nominal temperature will be reached with 130% of the motor's nominal current.



Figure 19: Motor Temperature Calculation.

## Stall Protection (P3.9.11 through P3.9.14)

NOTE:

The motor stall protection protects the motor from short-time overload situations such as one caused by a stalled shaft. The reaction time of the stall protection can be set shorter than that of the motor thermal protection. The stall state is defined with two parameters: **Stall Current** (P3.9.12) and **Stall Frequency Limit** (P3.9.14). If the current is higher than the set limit and the output frequency is lower than the set limit, the stall state is true. There is actually no real indication of the shaft rotation. Stall protection is a type of over-current protection.

## Stall current (P3.9.12)

The current can be set to 0.0...2<sup>\*</sup>IL. For a stall stage to occur, the current must have exceeded this limit. See the following figure. If **Motor current limit** (P3.1.1.7) is changed, this parameter is automatically calculated to 90% of the current limit.



To guarantee desired operation, this limit must be set below the current limit.



Figure 20: Stall characteristics settings.

### Stall time limit (P3.9.13)

This time can be set between 1.0 and 120.0s.

This is the maximum time allowed for a stall stage. The stall time is counted by an internal up/down counter. If the stall time counter value goes above this limit, the protection will cause a trip (see *Parameters of Stall Protection* '[P3.9.11]).



Figure 21: Stall time count.

## Under-load protection (P3.9.15 through P3.9.18)

The motor under-load protection ensures that there is load on the motor when the drive is running. If the motor loses its load, there might be a problem in the process (for example, a broken belt or a dry pump).

Motor under-load protection can be adjusted by setting the under-load curve **with Field Weakening Area Load** (P3.9.16) and **Zero Frequency Load** (P3.9.17). The under-load curve is a squared curve set between the zero frequency and the field weakening point. The protection is not active below 5 Hz (the under-load time counter is stopped).

The torque values for setting the under-load curve are set in percentage which refers to the nominal torque of the motor. The motor's name plate data, parameter motor nominal current and drives nominal current IL are used to find the scaling ratio for the internal torque value. If other than a nominal motor is used with the drive, the accuracy of the torque calculation decreases.

## Under-load protection: Field weakening area load (P3.9.16)

The torque limit can be set between 10.0 and 150.0%  $\times$  T<sub>n</sub>Motor.

This parameter gives the value for the minimum torque allowed when the output frequency is above the field weakening point. See the following figure.

If you change **Motor Nom Currnt** (P3.1.1.4), this parameter is automatically restored to the default value.



Figure 22: Setting of minimum load.

## Under-load protection: Time limit (P3.9.18)

This time can be set between 2.0 and 600.0 s.

This is the maximum time allowed for an under-load state to exist. An internal up/down counter counts the accumulated under-load time. If the under-load counter value goes above this limit the protection will cause a trip according to **Underload Flt** (P3.9.15). If the drive is stopped the under-load counter is reset to zero.



Figure 23: Underload time counter function.

# Automatic Reset (M3.10)

The Automatic Reset settings define how the automatic reset feature operates as well as what faults are allowed to be reset automatically.

The automatic reset settings are presented in the following table:

| Structure | Parameter        | Unit | Min          | Max               | Default           | ID  | Description                                                                                                             |
|-----------|------------------|------|--------------|-------------------|-------------------|-----|-------------------------------------------------------------------------------------------------------------------------|
| P3.10.1   | Automatic Reset  |      | Disabled     | Enabled           | Disabled          | 731 | Determines if the Automatic Reset feature can be used.                                                                  |
| P3.10.2   | Restart Function |      | Flying Start | Start<br>Function | Start<br>Function | 719 | Start mode for Automatic Reset<br>activation:<br>0 = Flying Start<br>1 = According to <b>Start Function</b><br>(P3.2.4) |
| P3.10.3   | Wait Time        | s    | 0.1          | 10000             | 30                | 717 | Wait time before first reset is executed.                                                                               |
| P3.10.4   | Trial Time       | S    | 0            | 10000             | 330               | 718 | When the trial time has elapsed,<br>and the fault is still active, the drive<br>will trip on fault.                     |
| P3.10.5   | Number of Trials |      | 1            | 10                | 10                | 759 | Number of restart attempts (irrespective of fault type).                                                                |
| P3.10.6   | Undervoltage Flt |      | No           | Yes               | Yes               | 720 | Determines if the automatic reset<br>feature can reset when an<br>undervoltage fault condition occurs.                  |
| P3.10.7   | OverVoltage Flt  |      | No           | Yes               | Yes               | 721 | Determines if the automatic reset<br>feature can reset when an<br>overvoltage fault condition occurs.                   |
| P3.10.8   | OverCurrent Flt  |      | No           | Yes               | Yes               | 722 | Determines if the automatic reset<br>feature can reset when an<br>overcurrent fault condition occurs.                   |
| P3.10.9   | AI Low Fault     |      | No           | Yes               | Yes               | 723 | Determines if the automatic reset<br>feature can reset when an analog<br>input low signal condition occurs.             |

| Structure | Parameter         | Unit | Min | Max | Default | ID    | Description                                                                                                        |
|-----------|-------------------|------|-----|-----|---------|-------|--------------------------------------------------------------------------------------------------------------------|
| P3.10.10  | UnitOverTemp Flt  |      | No  | Yes | Yes     | 724   | Determines if the automatic reset<br>feature can reset when a unit over<br>temperature fault condition occurs.     |
| P3.10.11  | MotorOverTempFlt  |      | No  | Yes | Yes     | 725   | Determines if the automatic reset<br>feature can reset when a motor<br>over temperature fault condition<br>occurs. |
| P3.10.12  | External Fault    |      | No  | Yes | No      | 726   | Determines if the Automatic Reset feature can reset when this fault occurs.                                        |
| P3.10.13  | Underload Flt     |      | No  | Yes | No      | 738   | Determines if the Automatic Reset feature can reset when this fault occurs.                                        |
| P3.10.14  | Rem Safety Flt    |      | No  | Yes | No      | 728   | Determines if the Automatic Reset feature can reset when this fault occurs.                                        |
| P3.10.15  | Run Interlock Flt |      | No  | Yes | No      | 14062 | Determines if the Automatic Reset feature can reset when this fault occurs.                                        |

## Automatic reset (P3.10.1)

Activate the *Automatic reset* after fault with this parameter.



#### NOTE:

Automatic reset is allowed for certain faults only. By giving the parameters **Undervoltage flt** (P3.10.6) to **Wait Time** (P3.10.13) the value **0** or **1** you can either allow or deny the automatic reset after the respective faults.

## Wait time (P3.10.3), Trial time (P3.10.4), and Number of trials (P3.10.5)

The Automatic reset function keeps resetting the faults appearing during the time set with this parameter. If the number of faults during the trial time exceeds the value of **Number of Trials** (P3.10.5), a permanent fault is generated. Otherwise, the fault is cleared after the trial time has elapsed and the next fault starts the trial time count again.

**Number of Trials** (P3.10.5) determines the maximum number of automatic fault reset attempts during the trial time set by this parameter. The time count starts from the first auto-reset. The maximum number is independent of the fault type.

Parameters (M3)



Number of trials: (P3.10.5 = 2)

11104.emf

Figure 24: Automatic reset function.

## Timer Functions (M3.11)

The timer functions (time channels) in the BT300 drive allow you to program functions to be controlled by the internal RTC (Real Time Clock). Almost every function that can be controlled by a digital input can also be controlled by a time channel. Instead of having an external PLC or Field Panel controlling a digital input, you can internally program the closed and opened intervals of the input.

## **Time Channels**

The on/off logic for the time channels is configured by assigning intervals and/or timers to them. One time channel can be controlled by many intervals or timers by assigning as many of these as needed to the time channel.

## Intervals

Every interval is given an **ON** Time and **OFF** Time. This is the daily time that the interval will be active during the days set with **From Day** and **To Day**. For example, the settings below indicate that the interval is active from 7:00 A.M. to 9:00 A.M. every weekday (Monday through Friday). The time channel this interval is assigned to will be seen as a closed virtual digital input during that period.

ON Time: 07:00:00 OFF Time: 09:00:00 From Day: Monday To Day: Friday

# Interval 1 (M3.11.1)

Table 47: Interval 1.

| Structure | Parameter       | Unit     | Min      | Max               | Default | ID                  | Description                                                                                                                                                                                                                                       |
|-----------|-----------------|----------|----------|-------------------|---------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P3.11.1.1 | ON Time         | hh:mm:ss | 0:00:00  | 23:59:59          | 1464    | ON Time             | Defines the time ON is issued to<br>the time the channel defined in<br><b>AssignToChannel</b> (P3.11.1.5) on<br>the day of week defined in <b>From</b><br><b>Day</b> (P3.11.1.3) to and including<br>day defined in <b>To Day</b><br>(P3.11.1.4). |
| P3.11.1.2 | OFF Time        | hh:mm:ss | 0:00:00  | 23:59:59          | 1465    | OFF Time            | Defines the time OFF is issued to<br>the time channel defined in<br><b>AssignToChannel</b> (P3.11.1.5) on<br>the day of week defined in <b>From</b><br><b>Day</b> (P3.11.1.3) to and including<br>day defined in <b>To Day</b><br>(P3.11.1.4).    |
| P3.11.1.3 | From Day        |          | Sunday   | Saturday          | 1466    | From Day            | Defines the beginning day of the<br>week the <b>ON Time</b> (P3.11.1.1)<br>and <b>OFF Time</b> (P3.11.1.2) are<br>issued to the unit.<br>0 = Sunday<br>1 = Monday<br>2 = Tuesday<br>3 = Wednesday<br>4 = Thursday<br>5 = Friday<br>6 = Saturday   |
| P3.11.1.4 | То Day          |          | Sunday   | Saturday          | 1467    | To Day              | Defines the ending day of the<br>week the <b>ON Time</b> (P3.11.1.1)<br>and <b>OFF Time</b> (P3.11.1.2) are<br>issued to the unit.<br>0 = Sunday<br>1 = Monday<br>2 = Tuesday<br>3 = Wednesday<br>4 = Thursday<br>5 = Friday<br>6 = Saturday      |
| P3.11.1.5 | AssignToChannel |          | Not Used | Time<br>Channel 3 | 1468    | AssignToCha<br>nnel | Defines the affected time channel<br>of the <b>ON Time</b> (P3.11.1.1) and<br><b>OFF Time</b> (P3.11.1.2)<br>0 = Not used<br>1 = Time Channel 1<br>2 = Time Channel 2<br>3 = Time Channel 3                                                       |

# Interval 2 (M3.11.2)

| Structure | Parameter       | Unit     | Min      | Max            | Default  | ID   | Description                   |
|-----------|-----------------|----------|----------|----------------|----------|------|-------------------------------|
| P3.11.2.1 | ON Time         | hh:mm:ss | 0:00:00  | 23:59:59       | 0:00:00  | 1469 | See description for P3.11.1.1 |
| P3.11.2.2 | OFF Time        | hh:mm:ss | 0:00:00  | 23:59:59       | 0:00:00  | 1470 | See description for P3.11.1.2 |
| P3.11.2.3 | From Day        |          | Sunday   | Saturday       | Sunday   | 1471 | See description for P3.11.1.3 |
| P3.11.2.4 | To Day          |          | Sunday   | Saturday       | Sunday   | 1472 | See description for P3.11.1.4 |
| P3.11.2.5 | AssignToChannel |          | Not Used | Time Channel 3 | Not Used | 1473 | See description for P3.11.1.5 |

#### Table 48: Interval 2.

# Interval 3 (M3.11.3)

Table 49: Interval 3.

| Structure | Parameter       | Unit     | Min      | Max            | Default  | ID   | Description                   |
|-----------|-----------------|----------|----------|----------------|----------|------|-------------------------------|
| P3.11.3.1 | ON Time         | hh:mm:ss | 0:00:00  | 23:59:59       | 0:00:00  | 1474 | See description for P3.11.1.1 |
| P3.11.3.2 | OFF Time        | hh:mm:ss | 0:00:00  | 23:59:59       | 0:00:00  | 1475 | See description for P3.11.1.2 |
| P3.11.3.3 | From Day        |          | Sunday   | Saturday       | Sunday   | 1476 | See description for P3.11.1.3 |
| P3.11.3.4 | To Day          |          | Sunday   | Saturday       | Sunday   | 1477 | See description for P3.11.1.4 |
| P3.11.3.5 | AssignToChannel |          | Not Used | Time Channel 3 | Not Used | 1478 | See description for P3.11.1.5 |

# Interval 4 (M3.11.4)

Table 50: Interval 4.

| Structure | Parameter       | Unit     | Min      | Max            | Default  | ID   | Description                   |
|-----------|-----------------|----------|----------|----------------|----------|------|-------------------------------|
| P3.11.4.1 | ON Time         | hh:mm:ss | 0:00:00  | 23:59:59       | 0:00:00  | 1479 | See description for P3.11.1.1 |
| P3.11.4.2 | OFF Time        | hh:mm:ss | 0:00:00  | 23:59:59       | 0:00:00  | 1480 | See description for P3.11.1.2 |
| P3.11.4.3 | From Day        |          | Sunday   | Saturday       | Sunday   | 1481 | See description for P3.11.1.3 |
| P3.11.4.4 | To Day          |          | Sunday   | Saturday       | Sunday   | 1482 | See description for P3.11.1.4 |
| P3.11.4.5 | AssignToChannel |          | Not Used | Time Channel 3 | Not Used | 1483 | See description for P3.11.1.5 |

# Interval 5 (M3.11.5)

Table 51: Interval 5.

| Structure | Parameter       | Unit     | Min      | Max            | Default  | ID   | Description                   |
|-----------|-----------------|----------|----------|----------------|----------|------|-------------------------------|
| P3.11.5.1 | ON Time         | hh:mm:ss | 0:00:00  | 23:59:59       | 0:00:00  | 1484 | See description for P3.11.1.1 |
| P3.11.5.2 | OFF Time        | hh:mm:ss | 0:00:00  | 23:59:59       | 0:00:00  | 1485 | See description for P3.11.1.2 |
| P3.11.5.3 | From Day        |          | Sunday   | Saturday       | Sunday   | 1486 | See description for P3.11.1.3 |
| P3.11.5.4 | To Day          |          | Sunday   | Saturday       | Sunday   | 1487 | See description for P3.11.1.4 |
| P3.11.5.5 | AssignToChannel |          | Not Used | Time Channel 3 | Not Used | 1488 | See description for P3.11.1.5 |

# Timers

Timers can be used to set a time channel as active during a certain time by commanding from a digital input (or a time channel). For example, the settings below will set the timer as active when Digital Input 1 on slotA is closed and kept active for 30 seconds after it opened.

Duration: 30s

Timer: DigIN SlotA.1

# Timer 1 (M3.11.6)

Table 52: Timer 1.

| Structure | Parameter       | Unit | Min      | Мах            | Default  | ID   | Description                                                                                                                                 |
|-----------|-----------------|------|----------|----------------|----------|------|---------------------------------------------------------------------------------------------------------------------------------------------|
| P3.11.6.1 | Duration        | s    | 0        | 72000          | 0        | 1489 | Defines the amount of time to added to AssignToChannel (P3.11.6.2)                                                                          |
| P3.11.6.2 | AssignToChannel |      | Not Used | Time Channel 3 | Not Used | 1490 | Defines the affected time channel (1-3)<br>for the timer.<br>0 = Not used<br>1 = Time Channel 1<br>2 = Time Channel 2<br>3 = Time Channel 3 |

# Timer 2 (M3.11.7)

Table 53: Timer 2.

| Structure | Parameter       | Unit | Min      | Max            | Default  | ID   | Description                   |
|-----------|-----------------|------|----------|----------------|----------|------|-------------------------------|
| P3.11.7.1 | Duration        | S    | 0        | 72000          | 0        | 1491 | See description for P3.11.6.1 |
| P3.11.7.2 | AssignToChannel |      | Not Used | Time Channel 3 | Not Used | 1492 | See description for P3.11.6.2 |

# Timer 3 (M3.11.8)

Table 54: Timer 3.

| Structure | Parameter       | Unit | Min      | Max            | Default  | ID   | Description                   |
|-----------|-----------------|------|----------|----------------|----------|------|-------------------------------|
| P3.11.8.1 | Duration        | s    | 0        | 72000          | 0        | 1491 | See description for P3.11.6.1 |
| P3.11.8.2 | AssignToChannel |      | Not Used | Time Channel 3 | Not Used | 1494 | See description for P3.11.6.2 |

## Example

### Problem:

We have a variable frequency drive for air conditioning in a warehouse. It needs to run between 7:00 A.M. until 5:00 P.M. on weekdays, and 9:00 A.M. until 1:00 P.M. on weekends. Additionally, the drive must be manually forced to run outside working hours if there are people in the building, and must continue to run for 30 minutes afterwards.

#### Solution:

Set up two intervals: one for weekdays, and one for weekends. A timer is also needed for activation outside the normal office hours. The example configuration is completed as follows:

- 1. Interval 1 (used for the weekdays)
  - Set ON Time (P3.11.1.1) to a value of 07:00:00.
  - Set **OFF Time** (P3.11.1.2) to a value of **17:00:00**.
  - Set From Day (P3.11.1.3) to a value of Monday.
  - Set **To Day** (P3.11.1.4) to a value of **Friday**.
  - Set Assign to Channel (P3.11.1.5) to a value of Time Channel 1.
- 2. Interval 2 (used for the weekends)
  - Set ON Time (P3.11.2.1) to a value of 09:00:00.
  - Set OFF Time (P3.11.2.2) to a value of 13:00:00.
  - Set From Day (P3.11.2.3) to a value of Saturday.
  - Set **To Day** (P3.11.2.4) to a value of **Sunday**.
  - Set Assign to Channel (P3.11.2.5) to a value of Time Channel 1.
- 3. Timer 1 (used for the override operation outside of normal office hours)
  - Set **Duration** (P3.11.6.1) to a value of **1800** (30 minutes).
  - Set Assign to Channel (P3.11.6.2) to a value of Time Channel 1.
  - Set **Timer 1** (P3.5.1.18) to a value of **DigIN Slot A.1**.
- 4. Control Source (location of the start/stop)

Set Control Signal 1 A (P3.5.1.1) to a value of TimeChannel.1.

## PID Controller 1 (M3.12)

The PID Controller 1 settings are used to configure the first PID controller, which controls the speed of the motor that is physically connected to the drive's output.

PID Controller 1 consists of the following settings:

- Basic Settings
- Setpoints
- Feedback
- Feedforward
- Soft Fill
- Process Supervision
- Pressure Loss Compensation

# Basic Settings (M3.12.1)

Table 55: Basic Settings.

| Structure | Parameter        | Unit | Min | Max  | Default | ID  | Description                                    |
|-----------|------------------|------|-----|------|---------|-----|------------------------------------------------|
| P3.12.1.1 | Gain             | %    | 0   | 1000 | 100     | 118 | Defines the proportional gain of the PID loop. |
| P3.12.1.2 | Integration Time | s    | 0   | 600  | 1       | 119 | Defines the integration time of the PID loop.  |
| P3.12.1.3 | Derivation Time  | s    | 0   | 100  | 0       | 132 | Defines the derivation time of the PID loop.   |

| Structure  | Parameter        | Unit   | Min               | Max           | Default           | ID   | Description                                                                                                                                                                                       |
|------------|------------------|--------|-------------------|---------------|-------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P3.12.1.4  | ProcessUnitSel.  |        | %                 | F             | %                 | 1036 | See Table Process Unit Selection.                                                                                                                                                                 |
| P3.12.1.5  | ProcessUnitMin   | Varies | Varies            | Varies        | 0                 | 1033 | Defines the minimum of the range for the process unit.                                                                                                                                            |
| P3.12.1.6  | ProcessUnitMax   | Varies | Varies            | Varies        | 100               | 1034 | Defines the maximum of the range for the process unit.                                                                                                                                            |
| P3.12.1.7  | ProcessUnitDeci. |        | 0                 | 4             | 2                 | 1035 | Defines the number of positions<br>after the decimal place that will<br>display.                                                                                                                  |
| P3.12.1.8  | Error Inversion  |        | Reverse<br>Acting | Direct Acting | Reverse<br>Acting | 340  | Defines the action of the PID loop.<br>0 = Reverse Acting (Fdbk < Stpt = ><br>Increase PID Output)<br>1 = Direct Acting (Fdbk < Stpt = ><br>Decrease PID Output)                                  |
| P3.12.1.9  | Dead Band        | Varies | Varies            | Varies        | 0                 | 1056 | Defines the dead band area around<br>the setpoint in process units. The<br>PID output is locked if the feedback<br>stays within the dead band area for<br>the <b>Dead Band Delay</b> (P3.12.1.10) |
| P3.12.1.10 | Dead Band Delay  | s      | 0                 | 320           | 0                 | 1057 | Defines the time for dead band.                                                                                                                                                                   |

Table 56: Process Units Selection.

|   | Unit   |    | Unit   |    | Unit    |    | Unit   |
|---|--------|----|--------|----|---------|----|--------|
| 0 | %      | 10 | kg/h   | 20 | kW      | 30 | ft3/h  |
| 1 | 1/min  | 11 | m3/s   | 21 | С       | 31 | in wg  |
| 2 | rpm    | 12 | m3/min | 22 | gal/s   | 32 | ft wg  |
| 3 | ppm    | 13 | m3/h   | 23 | gal/min | 33 | PSI    |
| 4 | pps    | 14 | m/s    | 24 | gal/h   | 34 | lb/in2 |
| 5 | I/2    | 15 | mbar   | 25 | lb/s    | 35 | hp     |
| 6 | l/min  | 16 | bar    | 26 | lb/min  | 36 | F      |
| 7 | l/h    | 17 | Pa     | 27 | lb/h    |    |        |
| 8 | kg/s   | 18 | kPa    | 28 | ft3/s   |    |        |
| 9 | kg/min | 19 | mVS    | 29 | ft3/min |    |        |

# Setpoints (M3.12.2)

Table 57: Setpoints.

| Structure | Parameter   | Unit   | Min    | Max    | Default | ID   | Description                                                                               |
|-----------|-------------|--------|--------|--------|---------|------|-------------------------------------------------------------------------------------------|
| P3.12.2.1 | Keypad SP 1 | Varies | Varies | Varies | 0       | 167  | Defines the primary keypad setpoint<br>if selected by <b>SP1 Source</b><br>(P3.12.2.4).   |
| P3.12.2.2 | Keypad SP 2 | Varies | Varies | Varies | 0       | 168  | Defines the secondary keypad<br>setpoint if selected by <b>SP1 Source</b><br>(P3.12.2.4). |
| P3.12.2.3 | Ramp Time   | S      | 0      | 300    | 0       | 1068 | Defines the rising and falling ramp times for setpoint changes.                           |

#### Chapter 4 - Parameters and Menu Structure

Parameters (M3)

| Structure  | Parameter        | Unit   | Min      | Max              | Default       | ID   | Description                                                                                                                                                                                      |
|------------|------------------|--------|----------|------------------|---------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P3.12.2.4  | SP 1 Source      |        | Not Used | Test<br>Sequence | Keypad<br>SP1 | 332  | See Table Setpoint Source.<br>Als and ProcessDataIn's are<br>handled as percent and scaled<br>according to Setpoint Min and<br>Setpoint Max.<br><b>NOTE:</b> ProcessDataIn uses two<br>decimals. |
| P3.12.2.5  | SP 1 Minimum     | %      | -200     | 200              | 0             | 1069 | Minimum value of Setpoint at<br>Analog Signal Minimum.                                                                                                                                           |
| P3.12.2.6  | SP 1 Maximum     | %      | -200     | 200              | 100           | 1070 | Maximum value of Setpoint at<br>Analog Signal Maximum.                                                                                                                                           |
| P3.12.2.7  | SP 1 Sleep Freq  | Hz     | 0        | 320              | 0             | 1016 | Define the frequency at which Sleep Mode activates.                                                                                                                                              |
| P3.12.2.8  | SP 1 Sleep Delay | S      | 0        | 3000             | 0             | 1017 | Minimum amount of time the<br>frequency has to remain below<br>Sleep Level before the drive is<br>stopped.                                                                                       |
| P3.12.2.9  | SP 1 WakeUpLevel | Varies |          |                  | 0             | 1018 | Defines the level for the PID<br>feedback value wake-up<br>supervision.                                                                                                                          |
| P3.12.2.10 | SP 1 Boost       | х      | -2       | 2                | 1             | 1071 | Setpoint can be boosted with a digital input.                                                                                                                                                    |
| P3.12.2.11 | SP 2 Source      |        | Not Used | Test<br>Sequence | Keypad<br>SP2 | 431  | See description for <i>SP 1 Source</i> (P3.12.2.4)                                                                                                                                               |
| P3.12.2.12 | SP 2 Minimum     | %      | -200     | 200              | 0             | 1073 | Minimum value of Setpoint at<br>Analog Signal Minimum.                                                                                                                                           |
| P3.12.2.13 | SP 2 Maximum     | %      | -200     | 200              | 100           | 1074 | Maximum value of Setpoint at<br>Analog Signal Maximum.                                                                                                                                           |
| P3.12.2.14 | SP 2 Sleep Freq  | Hz     | 0        | 320              | 0             | 1075 | Define the frequency at which Sleep Mode activates.                                                                                                                                              |
| P3.12.2.15 | SP 2 Sleep Delay | S      | 0        | 3000             | 0             | 1076 | Minimum amount of time the<br>frequency has to remain below<br>Sleep Level before the drive is<br>stopped.                                                                                       |
| P3.12.2.16 | SP 2 WakeUpLevel | Varies |          |                  | 0             | 1077 | Defines the level for the PID feedback value wake-up supervision.                                                                                                                                |
| P3.12.2.17 | SP 2 Boost       | х      | -2       | 2                | 1             | 1078 | Setpoint can be boosted with a digital input.                                                                                                                                                    |

#### Table 58: Setpoint Source.

|   | Settings          | Description            |  |  |  |  |  |
|---|-------------------|------------------------|--|--|--|--|--|
| 0 | Not Used          | Setpoint is not used.  |  |  |  |  |  |
| 1 | Keypad Setpoint 1 | Use keypad setpoint 1. |  |  |  |  |  |
| 2 | Keypad Setpoint 2 | Use keypad setpoint 2. |  |  |  |  |  |
| 3 | Al1               | Use analog input 1.    |  |  |  |  |  |
| 4 | AI2               | Use analog input 2.    |  |  |  |  |  |

|    | Settings       | Description         |  |  |  |  |  |  |
|----|----------------|---------------------|--|--|--|--|--|--|
| 5  | AI3            | Use analog input 3. |  |  |  |  |  |  |
| 6  | AI4            | Use analog input 4. |  |  |  |  |  |  |
| 7  | AI5            | Use analog input 5. |  |  |  |  |  |  |
| 8  | Al6            | Use analog input 6. |  |  |  |  |  |  |
| 9  | ProcessDataIn1 | Use ProcessDataIn1. |  |  |  |  |  |  |
| 10 | ProcessDataIn2 | Use ProcessDataIn2. |  |  |  |  |  |  |
| 11 | ProcessDataIn3 | Use ProcessDataIn3. |  |  |  |  |  |  |
| 12 | ProcessDataIn4 | Use ProcessDataIn4. |  |  |  |  |  |  |
| 13 | ProcessDataIn5 | Use ProcessDataIn5. |  |  |  |  |  |  |
| 14 | ProcessDataIn6 | Use ProcessDataIn6. |  |  |  |  |  |  |
| 15 | ProcessDataIn7 | Use ProcessDataIn7. |  |  |  |  |  |  |
| 16 | ProcessDataIn8 | Use ProcessDataIn8. |  |  |  |  |  |  |
| 17 | Test Sequence  |                     |  |  |  |  |  |  |

# Feedbacks (M3.12.3)

Table 59: Feedback.

| Structure | Parameter    | Unit | Min      | Max                | Default | ID   | Description                                                                                                                                                                                                                                                                                                    |
|-----------|--------------|------|----------|--------------------|---------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P3.12.3.1 | Function     |      | Source1  | Mean               | Source1 | 333  | Settings:<br>1 = Only Source 1 in use<br>2 = SQRT(Source1); (Flow =<br>ConstantxSQRT[Pressure])<br>3 = SQRT(Source1-Source2)<br>4 = SQRT(Source1) +<br>SQRT(Source2)<br>5 = Source1 + Source2<br>6 = Source1 - Source2<br>7 = Min(Source1, Source2)<br>8 = Max(Source1, Source2)<br>9 = Mean(Source1, Source2) |
| P3.12.3.2 | Gain         | %    | -1000    | 1000               | 100     | 1058 | Used with selection 2 in <b>Feedback</b><br><b>Function</b> (P3.12.3.1)                                                                                                                                                                                                                                        |
| P3.12.3.3 | FB 1 Source  |      | Not Used | ProcessDatal<br>n8 | AI2     | 334  | SeeTable Feedback Sources.<br>Als and ProcessDataIn are handled<br>as % and scaled according to<br>feedback min & max.<br><b>NOTE:</b> ProcessDataIn settings use<br>two decimal places.                                                                                                                       |
| P3.12.3.4 | FB 1 Minimum | %    | -200     | 200                | 0       | 336  | Minimum value at Analog Signal<br>Minimum.                                                                                                                                                                                                                                                                     |

### Chapter 4 - Parameters and Menu Structure

Parameters (M3)

| Structure | Parameter    | Unit | Min      | Max                | Default  | ID  | Description                                |
|-----------|--------------|------|----------|--------------------|----------|-----|--------------------------------------------|
| P3.12.3.5 | FB 1 Maximum | %    | -200     | 200                | 100      | 337 | Maximum value at Analog Signal<br>Maximum. |
| P3.12.3.6 | FB 2 Source  |      | Not Used | ProcessDatal<br>n8 | Not Used | 335 | See <b>FB 1 Source</b> (P3.12.3.3).        |
| P3.12.3.7 | FB 2 Minimum | %    | -200     | 200                | 0        | 338 | Minimum value at Analog Signal<br>Minimum. |
| P3.12.3.8 | FB 2 Maximum | %    | -200     | 200                | 100      | 339 | Maximum value at Analog Signal<br>Maximum. |

Table 60: Feedback Sources.

|    | Settings       | Description           |  |  |  |  |  |  |
|----|----------------|-----------------------|--|--|--|--|--|--|
| 0  | Not Used       | Setpoint is not used. |  |  |  |  |  |  |
| 1  | Al1            | Use analog input 1.   |  |  |  |  |  |  |
| 2  | AI2            | Use analog input 2.   |  |  |  |  |  |  |
| 3  | AI3            | Use analog input 3.   |  |  |  |  |  |  |
| 4  | AI4            | Use analog input 4.   |  |  |  |  |  |  |
| 5  | AI5            | Use analog input 5.   |  |  |  |  |  |  |
| 6  | AI6            | Use analog input 6.   |  |  |  |  |  |  |
| 7  | ProcessDataIn1 | Use ProcessDataIn1.   |  |  |  |  |  |  |
| 8  | ProcessDataIn2 | Use ProcessDataIn2.   |  |  |  |  |  |  |
| 9  | ProcessDataIn3 | Use ProcessDataIn3.   |  |  |  |  |  |  |
| 10 | ProcessDataIn4 | Use ProcessDataIn4.   |  |  |  |  |  |  |
| 11 | ProcessDataIn5 | Use ProcessDataIn5.   |  |  |  |  |  |  |
| 12 | ProcessDataIn6 | Use ProcessDataIn6.   |  |  |  |  |  |  |
| 13 | ProcessDataIn7 | Use ProcessDataIn7.   |  |  |  |  |  |  |
| 14 | ProcessDataIn8 | Use ProcessDataIn8.   |  |  |  |  |  |  |

# Feedforward (M3.12.4)

Table 61: Feedforward.

| Structure | Parameter    | Unit | Min      | Max            | Default  | ID   | Description                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------|--------------|------|----------|----------------|----------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P3.12.4.1 | Function     |      | Source1  | Mean           | Source1  | 1059 | Settings:<br>1 = Only Source 1 in use<br>2 = SQRT(Source1); (Flow =<br>ConstantSQRT(Pressure))<br>3 = SQRT(Source1-Source2)<br>4 = SQRT(Source1) +<br>SQRT(Source2)<br>5 = Source1 + Source2<br>6 = Source1 - Source2<br>7 = Min(Source1, Source2)<br>8 = Max(Source1, Source2)<br>9 = Mean(Source1, Source2)                                                                                                                             |
| P3.12.4.2 | Gain         | %    | -100     | 100            | 100      | 1060 | Used with selection 2 in <b>Feedforward</b><br><b>Function</b> (P3.12.4.1)                                                                                                                                                                                                                                                                                                                                                                |
| P3.12.4.3 | FF 1 Source  |      | Not Used | ProcessDataIn8 | Not Used | 1061 | Settings:<br>0 = Not used<br>1 = Al1<br>2 = Al2<br>3 = Al3<br>4 = Al4<br>5 = Al5<br>6 = Al6<br>7 = ProcessDataln1<br>8 = ProcessDataln2<br>9 = ProcessDataln3<br>10 = ProcessDataln4<br>11 = ProcessDataln5<br>12 = ProcessDataln6<br>13 = ProcessDataln7<br>14 = ProcessDataln8<br>Als and ProcessDataln are handled<br>as % and scaled according to<br>feedback min and max.<br>NOTE: ProcessDataln settings use<br>two decimal places. |
| P3.12.4.4 | FF 1 Minimum | %    | -200     | 200            | 0        | 1062 | Minimum value at Analog Signal<br>Minimum.                                                                                                                                                                                                                                                                                                                                                                                                |
| P3.12.4.5 | FF 1 Maximum | %    | -200     | 200            | 100      | 1063 | Maximum value at Analog Signal<br>Maximum.                                                                                                                                                                                                                                                                                                                                                                                                |
| P3.12.4.6 | FF 2 Source  |      | Not Used | ProcessDataIn8 | Not Used | 1064 | See <b>FF 1 Source</b> (P3.12.4.3).                                                                                                                                                                                                                                                                                                                                                                                                       |
| P3.12.4.7 | FF 2 Minimum | %    | -200     | 200            | 0        | 1065 | Minimum value at Analog Signal<br>Minimum.                                                                                                                                                                                                                                                                                                                                                                                                |
| P3.12.4.8 | FF 2 Maximum | %    | -200     | 200            | 100      | 1066 | Maximum value at Analog Signal<br>Maximum.                                                                                                                                                                                                                                                                                                                                                                                                |

# Process Supervision (M3.12.5)

Table 62: Process Supervision.

| Structure | Parameter     | Unit   | Min      | Max     | Default  | ID  | Description                                                                        |
|-----------|---------------|--------|----------|---------|----------|-----|------------------------------------------------------------------------------------|
| P3.12.5.1 | Enable Superv |        | Disabled | Enabled | Disabled | 735 | Settings:<br>0 = Disabled<br>1 = Enabled                                           |
| P3.12.5.2 | Upper Limit   | Varies | Varies   | Varies  | Varies   | 736 | Upper actual/process value supervision.                                            |
| P3.12.5.3 | Lower Limit   | Varies | Varies   | Varies  | Varies   | 758 | Lower actual/process value supervision.                                            |
| P3.12.5.4 | Delay         | S      | 0        | 30000   | 0        | 737 | If the desired value is not reached within this time, a fault or alarm is created. |

# Pressure Loss Compensation (M3.12.6)

Table 63: Pressure Loss Compensation.

| Structure | Parameter      | Unit   | Min        | Max       | Default  | ID   | Description                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------|----------------|--------|------------|-----------|----------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P3.12.6.1 | Enable SP 1    |        | Disabled   | Enabled   | Disabled | 1189 | Enables the drive to raise or lower<br>the setpoint depending on output<br>frequency. <b>SP 1 Max Comp.</b><br>(P3.12.6.2) is the compensation at<br>maximum frequency. This can be<br>used with incorrectly placed<br>sensors. For example, if a pressure<br>sensor is placed far away from the<br>wanted pressure and the error in<br>the measurement is in proportion to<br>the flow/output frequency.<br>0 = Disabled<br>1 = Enabled |
| P3.12.6.2 | SP 1 Max Comp. | %      | -214748.36 | 214748.36 | 0        | 1190 | Value added proportionally to the<br>frequency.<br>Setpoint Compensation = <b>SP 1 Max</b><br><b>Comp.</b> (P3.12.6.2) * ( <b>Output</b><br><b>Frequency</b> [M2.2.1]) - <b>Min</b><br><b>Frequency</b> [P3.3.1])/( <b>Max</b><br><b>Frequency</b> [P3.3.2] - <b>Min Frequency</b><br>[P3.3.1])                                                                                                                                          |
| P3.12.6.3 | Enable SP 2    | Varies | Disabled   | Enabled   | Disabled | 1191 | Enables the drive to raise or lower<br>the setpoint depending on output<br>frequency. <b>SP 2 Max Comp.</b><br>(P3.12.6.2) is the compensation at<br>maximum frequency. This can be<br>used with incorrectly placed<br>sensors. For example, if a pressure<br>sensor is placed far away from the<br>wanted pressure and the error in<br>the measurement is in proportion to<br>the flow/output frequency.<br>0 = Disabled<br>1 = Enabled |
| P3.12.6.4 | SP 2 Max Comp. | %      | -214748.36 | 214748.36 | 0        | 1192 | Value added proportionally to the<br>frequency.<br>Setpoint Compensation = <b>SP 2 Max</b><br><b>Comp.</b> (P3.12.6.4) * ( <b>Output</b><br><b>Frequency</b> [M2.2.1] - <b>Min</b><br><b>Frequency</b> [P3.3.1] / <b>Max</b><br><b>Frequency</b> [P3.3.2] - <b>Min Frequency</b><br>[P3.3.1].)                                                                                                                                           |

# PID Control Sequence Details

## Dead band hysteresis (P3.12.1.9) and Dead band delay (P3.12.1.10)

The PID controller output is locked if the actual value stays within the dead band area around the reference for a predefined time. This function prevents unnecessary movement and wear on actuators and valves.



Figure 25: Dead band.

### Sleep frequency limit 1 (P3.12.2.7), Sleep delay 1 (P3.12.2.8), and Wake-up level 1 (P3.12.2.9)

This function puts the drive into sleep mode if the frequency stays below the sleep limit for a longer period than that set with the **Sleep Delay** (P3.12.2.8). This means that the start command remains on, but the run request is turned off. When the actual value goes below or above the wake-up level depending on the set acting mode, the drive will activate the run request again, if the start command is still on.



## Feedforward function (P3.12.4.1)

Feedforward usually needs accurate process models, but in some cases, a gain + offset type of feedforward is enough. The feedforward part does not use any feedback measurements of the actual controlled process value (water level in the following Example). Siemens feedforward control uses other measurements which are indirectly affecting the controlled process value.

Figure 26: Sleep limit, Sleep delay, Wake-up level.

#### Example:

You are controlling the water level of a tank by means of flow control. The desired water level has been defined as a setpoint and the actual level as feedback. The control signal acts on the incoming flow.

Think of the outflow as a disturbance that can be measured. Based on the measurements of the disturbance, you can try to compensate for this disturbance with a simple feedforward control (gain and offset) which is added to the PID output.

This way, the controller will react much faster to changes in the outflow than if you had just measured the level.



Figure 27: Feedforward Control.



11108.emf

Figure 28: Process Supervision.

Upper and lower limits around the reference are set. When the actual value goes above or below, a counter starts counting up towards the **Delay** (P3.12.5.4). When the actual value is within the allowed area, the same counter counts down instead. Whenever the counter is higher than the Delay, an alarm or fault (depending on the selected response) is generated.

### **Pressure Loss Compensation**

### Pressure



11109.emf

Figure 29: Position of Pressure Sensor.

If pressurizing a long pipe with many outlets, the best place for the sensor is probably halfway down the pipe (Position 2). However, sensors may, for example, be placed directly after the pump. This will give the right pressure directly after the pump, but farther down in the pipe the pressure will drop depending on the flow.

### Enable Setpoint 1 (P3.12.6.1), and Setpoint 1 max compensation (P3.12.6.2)

The sensor is placed in Position 1. The pressure in the pipe will remain constant when we have no flow. However, with flow, the pressure will drop farther down in the pipe. This can be compensated by raising the setpoint as the flow increases. In this case, the flow is estimated by the output frequency and the setpoint is linearly increased with the flow as in the figure below.



Figure 30: Enable Setpoint 1 for Pressure Loss Compensation.

# PID Controller 2 (M3.13)

The PID Controller 2 settings configure the second PID controller, which controls an external device. The PID Controller 2 consists of the following settings:

- Basic Settings
- Setpoints
- Feedback
- Process Supervision

# Basic Settings (M3.13.1)

Table 64: PID Controller 2 Basic Settings.

| Structure  | Parameter        | Unit   | Min      | Max      | Default  | ID   | Description                                                                                                                                                                                        |
|------------|------------------|--------|----------|----------|----------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P3.13.1.1  | Enable PID       |        | Disabled | Enabled  | Disabled | 1630 | Enable parameter for the second PID controller.                                                                                                                                                    |
| P3.13.1.2  | Output in Stop   | %      | 0        | 100      | 0        | 1100 | The output value of the PID control<br>in % of its maximum output value<br>while it is stopped using Digital<br>Input.                                                                             |
| P3.13.1.3  | Gain             | %      | 0        | 1000     | 100      | 1631 | Defines the proportional gain of the PID loop.                                                                                                                                                     |
| P3.13.1.4  | Integration Time | S      | 0        | 600      | 1        | 1632 | Defines the integration time of the PID loop.                                                                                                                                                      |
| P3.13.1.5  | Derivation Time  | S      | 0        | 100      | 0        | 1633 | Defines the derivation time of the PID loop.                                                                                                                                                       |
| P3.13.1.6  | ProcessUnitSel.  |        | %        | F        | %        | 1635 | See Table Process Unit Selection.                                                                                                                                                                  |
| P3.13.1.7  | ProcessUnitMin   | Varies | Varies   | Varies   | 0        | 1664 | Defines the minimum of the range for the process unit.                                                                                                                                             |
| P3.13.1.8  | ProcessUnitMax   | Varies | Varies   | Varies   | 100      | 1665 | Defines the maximum of the range for the process unit.                                                                                                                                             |
| P3.13.1.9  | ProcessUnitDeci. |        | 0        | 4        | 2        | 1666 | Defines the number of positions<br>after the decimal place that is to be<br>displayed.                                                                                                             |
| P3.13.1.10 | Error Inversion  |        | Normal   | Inverted | Normal   | 1636 | Defines the action of the PID loop.<br>0 = Reverse Acting (Fdbk < Stpt = ><br>Increase PID Output)<br>1 = Direct Acting (Fdbk < Stpt = ><br>Decrease PID Output)                                   |
| P3.13.1.11 | Dead Band        | Varies | Varies   | Varies   | 0        | 1637 | Defines the dead band area around<br>the setpoint in process units. The<br>PID output is locked if the feedback<br>stays within the dead band area for<br>the <b>Dead Band Delay</b> (P3.13.1.12). |
| P3.13.1.12 | Dead Band Delay  | s      | 0        | 320      | 0        | 1638 | Defines the time for dead band.                                                                                                                                                                    |

# Setpoints (M3.13.2)

| Structure | Parameter   | Unit   | Min    | Max    | Default | ID   | Description                                                                             |
|-----------|-------------|--------|--------|--------|---------|------|-----------------------------------------------------------------------------------------|
| P3.13.2.1 | Keypad SP 1 | Varies | Varies | Varies | 0       | 1640 | Defines the primary keypad setpoint<br>if selected by <b>SP1 Source</b><br>(P3.13.2.4). |
| P3.13.2.2 | Keypad SP 2 | Varies | Varies | Varies | 0       | 1641 | Defines the secondary keypad setpoint if selected by <b>SP1 Source</b> (P3.13.2.4).     |
| P3.13.2.3 | Ramp Time   | S      | 0      | 300    | 0       | 1642 | Defines the rising and falling ramp times for setpoint changes.                         |

#### Chapter 4 - Parameters and Menu Structure

Parameters (M3)

| Structure | Parameter    | Unit | Min      | Max              | Default       | ID   | Description                                                                                                                                                                                                           |
|-----------|--------------|------|----------|------------------|---------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P3.13.2.4 | SP 1 Source  |      | Not Used | Test<br>Sequence | Keypad<br>SP1 | 1643 | See Table Setpoint Sources.<br>Als and ProcessDataIn settings are<br>handled as percent and scaled<br>according to Setpoint Min and<br>Setpoint Max.<br><b>NOTE:</b> Settings 9 through 16 use<br>two decimal places. |
| P3.13.2.5 | SP 1 Minimum | %    | -200     | 200              | 0             | 1644 | Minimum value of Setpoint at<br>Analog Signal Minimum.                                                                                                                                                                |
| P3.13.2.6 | SP 1 Maximum | %    | -200     | 200              | 100           | 1645 | Maximum value of Setpoint at<br>Analog Signal Maximum.                                                                                                                                                                |
| P3.13.2.7 | SP 2 Source  |      | Not Used | Test<br>Sequence | Not Used      | 1646 | See <b>SP1 Source</b> (P3.13.2.4).                                                                                                                                                                                    |
| P3.13.2.8 | SP 2 Minimum | %    | -200     | 200              | 0             | 1647 | Minimum value of Setpoint at<br>Analog Signal Minimum.                                                                                                                                                                |
| P3.13.2.9 | SP 2 Maximum | %    | -200     | 200              | 100           | 1648 | Maximum value of Setpoint at<br>Analog Signal Maximum.                                                                                                                                                                |

# Feedback (M3.13.3)

Table 66: PID Controller 2 Feedback.

| Structure | Parameter    | Unit | Min      | Max            | Default | ID   | Description                                                                                                                                                                                                                                                                                                 |
|-----------|--------------|------|----------|----------------|---------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P3.13.3.1 | Function     |      | Source1  | Mean           | Source1 | 1650 | Settings:<br>1 = Only Source 1 in use<br>2 = SQRT(Source1); (Flow =<br>ConstantxSQRT(Pressure))<br>3 = SQRT(Source1-Source2)<br>4 = SQRT(Source1) + SQRT(Source2)<br>5 = Source1 + Source2<br>6 = Source1 - Source2<br>7 = Min(Source1, Source2)<br>8 = Max(Source1, Source2)<br>9 = Mean(Source1, Source2) |
| P3.13.3.2 | Gain         | %    | -1000    | 1000           | 100     | 1651 | Used with selection 2 in Feedback<br>Function (P3.12.3.1)                                                                                                                                                                                                                                                   |
| P3.13.3.3 | FB 1 Source  |      | Not Used | ProcessDataIn8 | AI1     | 1652 | See Table <i>Feedback Sources</i> .<br>Als and ProcessDataIn settings are<br>handled as % and scaled according to<br>feedback min and max.<br><b>NOTE:</b> Settings 7 through 14 use two<br>decimal places.                                                                                                 |
| P3.13.3.4 | FB 1 Minimum | %    | -200     | 200            | 0       | 1653 | Minimum value at Analog Signal<br>Minimum.                                                                                                                                                                                                                                                                  |
| P3.13.3.5 | FB 1 Maximum | %    | -200     | 200            | 100     | 1654 | Maximum value at Analog Signal<br>Maximum.                                                                                                                                                                                                                                                                  |
| P3.13.3.6 | FB 2 Source  |      | Not Used | ProcessDataIn8 | AI2     | 1655 | See <b>FB 1 Source</b> (P3.12.3.3).                                                                                                                                                                                                                                                                         |
| P3.13.3.7 | FB 2 Minimum | %    | -200     | 200            | 0       | 1656 | Minimum value at Analog Signal<br>Minimum.                                                                                                                                                                                                                                                                  |
| P3.13.3.8 | FB 2 Maximum | %    | -200     | 200            | 100     | 1657 | Maximum value at Analog Signal<br>Maximum.                                                                                                                                                                                                                                                                  |

# Process Supervision (M3.13.4)

Table 67: PID Controller 2 Process Supervision.

| Structure | Parameter     | Unit   | Min      | Max     | Default  | ID   | Description                                                                        |
|-----------|---------------|--------|----------|---------|----------|------|------------------------------------------------------------------------------------|
| P3.13.4.1 | Enable Superv |        | Disabled | Enabled | Disabled | 1659 | Settings:<br>0 = Disabled<br>1 = Enabled                                           |
| P3.13.4.2 | Upper Limit   | Varies | Varies   | Varies  | Varies   | 1660 | Upper actual/process value<br>supervision.                                         |
| P3.13.4.3 | Lower Limit   | Varies | Varies   | Varies  | Varies   | 1661 | Lower actual/process value supervision.                                            |
| P3.13.4.4 | Delay         | S      | 0        | 30000   | 0        | 1662 | If the desired value is not reached within this time, a fault or alarm is created. |

# Multi-pump (M3.14)

The Multi-Pump functionality controls up to four motors (pumps or fans) with PID Controller 1. The drive is connected to one motor which is the regulating motor. This motor connects and disconnects the other motors to/from the mains using contactors controlled with relays when needed, to maintain the correct setpoint.

The Auto-Change function controls the order/priority in which the motors are started to guarantee their equal wear. The controlling motor can be included in the Auto-Change and interlock logic, or it may be selected to always function as Motor 1. Motors can be taken out of use momentarily (for example, for service). This is completed using the interlock function.

The Multi-Pump settings are presented in the following table:

Table 68: Multi-pump Settings.

| Structure | Parameter        | Unit | Min      | Max     | Default  | ID   | Description                                                                                                                                                                                              |
|-----------|------------------|------|----------|---------|----------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P3.14.1   | Number of Motors |      | 1        | 4       | 1        | 1001 | Defines the total number of motors<br>to be used with the multi-pump<br>function.                                                                                                                        |
| P3.14.2   | Interlock Funct. |      | Disabled | Enabled | Disabled | 1032 | Enables parameter for the interlock<br>function to be used with the multi-<br>pump function. Interlocks are used<br>to tell the system if a motor is<br>connected or not.<br>0 = Disabled<br>1 = Enabled |
| P3.14.3   | Include FC       |      | Disabled | Enabled | Enabled  | 1028 | Defines if the motor connected to<br>the drive is included in the auto-<br>change function or not.<br>0 = Disabled (Not included)<br>1 = Enabled (included)                                              |
| P3.14.4   | Autochange       |      | Disabled | Enabled | Disabled | 1027 | Disable/enable rotation of starting<br>order and priority of motors.<br>0 = Disabled<br>1 = Enabled                                                                                                      |
| P3.14.5   | Autoch Interval  | h    | 0        | 3000    | 48       | 1029 | Defines the time between auto<br>change in accordance with<br>Autoch:FreqLim (P3.14.6) and<br>AutochMotorLimit (P3.14.7).                                                                                |

| Structure | Parameter        | Unit | Min | Max  | Default | ID   | Description                                                                             |
|-----------|------------------|------|-----|------|---------|------|-----------------------------------------------------------------------------------------|
| P3.14.6   | Autoch:FreqLim   | Hz   | 0   | 50   | 25      | 1031 | Defines the level which the auto change is capable to take place.                       |
| P3.14.7   | AutochMotorLimit |      | 0   | 4    | 1       | 1030 | Defines the level which the auto change is capable to take place.                       |
| P3.14.8   | Bandwidth        | %    | 0   | 100  | 10      | 1097 | Percentage of the setpoint.                                                             |
| P3.14.9   | Bandwidth Delay  | S    | 0   | 3600 | 10      | 1098 | Feedback outside the bandwidth,<br>time must pass before pumps are<br>added or removed. |

## Multi-Pump

Motors are connected/disconnected if the PID controller is not able to keep the process value or feedback within the defined bandwidth around the setpoint.

Criteria for connecting/adding motors (also see the following figure):

- Feedback value outside the bandwidth area.
- Regulating motor running at a "close-to-max" frequency (-2 Hz).
- Conditions above are fulfilled for a time longer than the bandwidth delay.
- There are additional motors available.



Figure 31:

Criteria for disconnecting/removing motors:

- Feedback value outside bandwidth area.
- Regulating motor running at a "close-to-min" frequency (+2 Hz).
- Conditions above are fulfilled for a time longer than the bandwidth delay
- There are more motors running than the regulating one.

## Interlock function (P3.14.2)

Interlocks can be used to tell the Multi Pump system that a motor is not available, for example, because the motor is removed from the system for maintenance or bypassed for manual control.

Enable this function to use the interlocks. Choose the needed status for each motor by digital inputs (Interlock1 (P3.5.1.26) to Interlock 5 (P3.5.1.30). If the input is closed (TRUE) the motor is available for the Multi-Pump system; otherwise, it will not be connected by the Multi-Pump logic.

#### Example of the Interlock logic:

If the motor starting order is

 $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$ 

When the interlock of motor **3** is removed (the value of **Interlock 3** (P3.5.1.28) is set to **FALSE**) the order changes to:

 $1 \rightarrow 2 \rightarrow 4 \rightarrow 5$ 

If motor **3** is taken into use again (changing the value of **Interlock 3** (P3.5.1.28) to TRUE), the system runs without stopping and motor **3** is placed last in the sequence:

 $1 \rightarrow 2 \rightarrow 4 \rightarrow 5 \rightarrow 3$ 

The next time the system is stopped or goes to sleep mode, the sequence returns to its original order.  $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$ 

### Include FC (P3.14.3)

Table 69: Include FC Selections.

| Selection | Selection name | Description                                                                                                          |
|-----------|----------------|----------------------------------------------------------------------------------------------------------------------|
| 0         | Disabled       | Motor 1 (motor connected to variable frequency drive) is always frequency controlled and not affected by interlocks. |
| 1         | Enabled        | All motors can be controlled and are affected by interlocks.                                                         |

### Wiring

There are two different ways to make the connections depending on whether selection **0** or **1** is set as parameter value.

#### Selection 0, Disabled:

The variable frequency drive or the regulating motor is not included in the auto-change or interlocks logic. The drive is directly connected to motor 1 as in the following figure. The other motors are auxiliary ones connected to the mains by contactors and controlled by relays in the drive.

#### Chapter 4 - Parameters and Menu Structure Parameters (M3)



Figure 32: Multi-pump: FC Disabled.

#### Selection 1, Enabled:

If the regulating motor needs to be included in the auto-change or interlock logic make the connection according to the following figure.

Each motor is controlled by a relay, but the contact logic ensures that the first connected motor is always connected to the drive and near the mains.



Figure 33: Multi-pump: FC Enabled.

104 | 180 Siemens Industry, Inc. Building Technologies BT11113

## Auto-change (P3.14.4)

| Selection | Selection Name | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0         | Disabled       | The priority/starting order of the motors is always 1-2-3-4-5 in normal operation. It may have changed during its run if interlocks have been removed and added again, but the priority/order is always restored after a stop.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1         | Enabled        | The priority is changed at certain intervals to get an equal wear on all motors.<br>The intervals of the auto-change can be <b>changedAutochInterval</b> (P3.14.5). You can also set a limit for how many motors are allowed to run <b>AutochMotorLimit</b> (P3.14.7) as well as for the maximum frequency of the regulating drive when the auto-change is done <b>Autoch:FreqLim</b> (P3.14.6). If the auto-change interval <b>Autoch Interval</b> (P3.14.5) has expired, but the frequency and motor limits are not fulfilled, the auto-change will be postponed until all conditions are met (this is to avoid for example sudden pressure drops while the system is performing an auto-change when there is a high capacity demand at a pump station. |

Table 70: Auto-Change Selections.

# Example:

In the auto-change sequence after the auto-change has taken place, the motor with the highest priority is placed last and the others are moved up by one place:

Starting order/priority of motors:  $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$ 

→ Autochange →

Starting order/priority of motors:  $2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 1$ 

→ Autochange →

Starting order/priority of motors:  $3 \rightarrow 4 \rightarrow 5 \rightarrow 1 \rightarrow 2$ 

# Fire Mode (M3.16)

The drive ignores all commands from the keypad, fieldbuses, and the PC tool and runs at the speed defined in **Fire Mode Frequency Source** (P3.16.5) when the mode is activated. If activated, the alarm sign displays on the keypad and the warranty is void. To enable the function, a password must be set in **Fire Mode Password** (P3.16.1).



#### NOTE:

The warranty is void if the Fire Mode function is activated. Test Mode can be used to test the Fire Mode function without voiding the warranty.

There is a different password for test mode, to be used for testing the Fire Mode without the warranty becoming void.

The Fire Mode settings are presented in the following table:

#### Table 71: Fire Mode Settings.

| Structure | Parameter            | Unit | Min | Max                         | Default       | ID   | Description                                                                                                                                                                                                                                                                                                  |
|-----------|----------------------|------|-----|-----------------------------|---------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P3.16.1   | FireMode Passwd      |      | 0   | 9999                        | 0             | 1599 | Defines use of the Fire Mode.<br>Fire Mode is enabled when set<br>to a value of <b>1001</b> . A test mode<br>can be entered by setting to a<br>value of <b>1234</b> previous to the<br>next activation as defined by<br><b>FireMode Activ.Open</b> (P3.16.2)<br>or <b>FireMode Activ.Close</b><br>(P3.16.3). |
| P3.16.2   | FireMode Activ.Open  |      |     |                             | DigIN Slot0.2 | 1596 | Defines location of fire mode<br>activation on contact opening.<br>Open Contact = Fire Mode<br>Active<br>Contact Closure = No Action<br><i>Also see Menu Structure</i><br><i>P3.5.1.39.</i>                                                                                                                  |
| P3.16.3   | FireMode Activ.Close |      |     |                             | DigIN Slot0.1 | 1597 | Defines location of Fire Mode<br>activation on contact closing.<br>Open Contact = No Action<br>Contact Closure = Fire Mode<br>Active<br><i>Also see Menu Structure</i><br><i>P3.5.1.40.</i>                                                                                                                  |
| P3.16.4   | FireMode Freq        | Hz   | 0   | Parameter<br>P1.9 or P3.3.2 | 0             | 1598 | Defines the frequency setpoint<br>to be followed when fire mode is<br>activated as defined by<br><b>FireMode Active.Open</b> (P3.16.2)<br>or <b>FireMode Activ.Close</b><br>(P3.16.3) when <b>FireMode</b><br><b>FreqSource</b> (P3.16.5) is defined<br>as <b>Fire Mode Frequency</b> .                      |

Parameters (M3)

| Structure | Parameter           | Unit | Min           | Max           | Default       | ID   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------|---------------------|------|---------------|---------------|---------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P3.16.5   | FireMode FreqSource |      | FireMode Freq | Motor Pot Ref | FireMode Freq | 1617 | Selection of the frequency<br>reference source to be followed<br>when fire mode has be activated<br>as defined by <b>FireMode</b><br><b>Activ.Open</b> (P3.16.2) or<br><b>FireMode Activ.Close</b> (P3.16.3).<br>Possible settings:<br>0 = Fire Mode Frequency (as<br>defined by <b>FireMode Freq</b><br>(P3.16.4))<br>1 = Preset Speeds<br>2 = Keypad<br>3 = Fieldbus<br>4 = Al1<br>5 = Al2<br>6 = Al1 + Al2<br>7 = PID1<br>8 = Motor Potentiometer |
| P3.16.6   | FireMode Reverse    |      |               |               | DigIN Slot0.1 | 1618 | Defines location of the reverse<br>command when Fire Mode is<br>active as defined by <b>FireMode</b><br><b>Activ.Open</b> (P3.16.2) or<br><b>FireMode Activ.Close</b> (P3.16.3).<br>Open Contact = Forward<br>Contact Closure = Reverse<br><b>NOTE:</b> This function has no<br>effect in normal mode of<br>operation.<br><i>Also see Menu Structure</i><br><i>P3.5.1.4.</i>                                                                         |
| M3.16.7   | FireMode Status     |      | Disabled      | Test Mode     | Disabled      | 1597 | Displays the status of the Fire<br>Mode as follows:<br>0 = Disabled<br>1 = Enabled<br>2 = Activated (Enabled and DI<br>active)<br>3 = Test Mode                                                                                                                                                                                                                                                                                                      |
| M3.16.8   | FireMode Counter    |      | 0             | 4294967295    |               | 1679 | Displays the number of times<br>the Fire Mode has been<br>activated.<br><b>NOTE:</b> This counter cannot be<br>reset.                                                                                                                                                                                                                                                                                                                                |

# Application Settings (M3.17)

The Applications Settings contain specific application information and are presented in the following table:

| Structure | Parameter       | Unit | Min      | Max        | Default  | ID   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------|-----------------|------|----------|------------|----------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P3.17.1   | Password        |      | 0        | 65000      | 0        |      | Location for entering a password to<br>the unit that will grant access to<br>development parameters.                                                                                                                                                                                                                                                                                                                                                       |
| P3.17.2   | kW/HP Selection |      | kW       | HP         | HP       | 1198 | Defines the selection of the unit's<br>power type parameters. Selectable<br>for kilowatt or horse power.                                                                                                                                                                                                                                                                                                                                                   |
| P3.17.3   | °C/°F Selection |      | °C       | °F         | °F       | 1197 | Defines the selection of the unit's<br>temperature type parameters.<br>Selectable for Celsius or<br>Fahrenheit.                                                                                                                                                                                                                                                                                                                                            |
| P3.17.4   | ByPass          |      | Disabled | Electronic | Disabled | 1809 | Defines the bypass option<br>connected to the drive.<br><b>NOTE:</b> To set the proper value for<br>this parameter, it is not<br>recommended to change this<br>parameter. This parameter is set<br>during the run of the <b>Bypass Wizard</b><br>(P1.21)<br>Possible settings are as follows:<br>0 = Disabled<br>1 = Conventional<br>2 = Electronic<br><b>NOTE:</b> The setting of Disabled<br>should also be used with all SED2<br>Migration Bypass Kits. |

Table 72: Application Settings.Information.

# Bypass (M3.18)

The Bypass settings can only be accessed if **Bypass** (P3.17.4) is set to **Electronic**. The best way to set this is by executing the **Bypass Wizard** (P1.21). The Bypass settings contain specific information about the Electronic Bypass configuration.

The bypass settings are presented in the following table:
| Structure | Parameter        | Unit | Min      | Max     | Default  | ID   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------|------------------|------|----------|---------|----------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P3.18.1   | Bypass Delay     | S    | 1        | 30      | 1        | 1818 | Defines the time from when bypass is<br>activated until the M1 (bypass)<br>contactor is pulled in and the motor<br>begins to spin.                                                                                                                                                                                                                                                                                                                                                                                                             |
| P3.18.2   | AutoBypass       |      | Disabled | Enabled | Disabled | 1813 | Enables parameter to the Auto Bypass<br>feature. If enabled, when a selected<br>fault (as defined by <b>AutoByp Faults</b><br>[P3.18.3]) occurs and the amount of<br>time defined in <b>AutoBypass Delay</b><br>(P3.18.4) has passed, the unit<br>automatically switches to bypass<br>mode of operation. The <b>M2</b> (Output)<br>contactor will be opened, the <b>M1</b><br>(Bypass) contactor will be closed, and<br>line voltage will be connected directly<br>to the motor. Motor will spin at full<br>speed.                             |
| P3.18.3   | AutoByp Faults   |      |          |         |          | 1812 | Defines the authorized faults for the Auto Bypass feature to activate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| P3.18.4   | AutoBypass Delay | s    | 1        | 30      | 1        | 1817 | Defines the delay time from when the drive faults and the bypass is enabled.                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| P3.18.5   | EssentServEnable |      | Disabled | Enabled | Disabled | 1826 | Enables parameter to the Essential<br>Services feature. If enabled, when<br>activated by Essential Services<br>(P3.5.1.52), an Essential Services<br>fault (83) displays. This is a version of<br>Fire Mode that uses bypass instead of<br>the drive for controlling the motor. The<br>unit automatically switches to bypass<br>mode of operation. The M2 (Output)<br>contactor will be opened, the M1<br>(Bypass) contactor will be closed, and<br>line voltage will be connected directly<br>to the motor. Motor will spin at full<br>speed. |
| P3.18.6   | RemoteBypEnable  |      | Disabled | Enabled | Disabled | 1828 | Enables parameter to the Remote<br>Bypass feature. If enabled, when unit<br>is placed in bypass mode, the <b>M1</b><br>(Bypass) contactor opens/closes in<br>accordance with <b>Rem. Ctrl. Place</b><br>(P3.2.1)                                                                                                                                                                                                                                                                                                                               |

Table 73: Bypass Settings.

# **Diagnostics (M4)**

Table 74: Diagnostics.

| Menu and Parameter Group | Description                                       |
|--------------------------|---------------------------------------------------|
| Active Faults (M4.1)     | Display of currently active faults 1 and 2.       |
| Reset Faults (P4.2)      | Parameter to acknowledge/reset a fault.           |
| Fault History (M4.4)     | Display of up to 40 previous faults.              |
| Total Counters (M4.6)    | Display of the overall counters (not resettable). |
| Trip Counters (M4.7)     | Display of the counters (resettable).             |
| Software Info (M4.8)     | Display of the software information.              |

# Active faults (M4.1)

Active Faults will display any active fault. When a fault/faults display(s), the display with the name of the fault blinks.

Press the OK

button to return to the Diagnostics menu. The Active Faults sub-menu shows the number of faults.

Select the fault and press the work button to see the fault-time data.

The memory can store a maximum of 10 active faults, in the order of occurrence.

# Reset faults (P4.2)

When a fault has occurred, this parameter can be used to reset the drive from the fault condition.



### NOTES:

1. Remove external control signal before resetting the fault to prevent unintentional restart of the drive.

2. The fault remains active until it is cleared with one of the following methods:

- If a fieldbus communication is in use, command the Reset Fault object.

- If a digital input is programmed for **Fault Reset Close** (P3.5.1.9) or **Fault Reset Open** (P3.5.1.10),

toggle the digital input.

3. The default setting for **Fault Reset Close** (P3.5.1.9) is digital input 4 (DigIN SlotA.4) a. Press and hold the Back/Reset button on the keypad for one second.

b. Enter the Diagnostics (M4) menu, enter **Reset Faults** (P4.2) parameter, and select **Reset Faults**.

| Structure | Parameter    | Description                                                                                                                                                                                                           |
|-----------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P4.2      | Reset Faults | Resets/acknowledges alarms/faults that are waiting to be reset. Active faults cannot be reset.<br><b>NOTE:</b> This same action can be done by pressing and holding the Back/Reset button for approximately 1 second. |

# Fault History (M4.4)

Fault history can contain a maximum number of 40 faults. Once the count of 40 has been reached, the FIFO method is used to store the newest faults. On each fault in memory, you will also find additional information about the drive when the fault occurred. See *Chapter 5, Fault Tracing* for more information.

110 | 180

Siemens Industry, Inc.

# Total Counters (M4.6)

Total Counters contain all the totalized counters for energy usage, run time, power on time, and even start command count. These setting are not resettable.

The total counters are presented in the following table:

Table 75: Total Counters.

| Structure | Parameter         | Unit      | Min | Max | Default | ID   | Description                                                                                                                                                                                                                                                                                            |
|-----------|-------------------|-----------|-----|-----|---------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| M4.6.1    | Energy Counter    | Varies    |     |     |         | 2291 | The amount of energy taken from<br>the supply.<br><b>NOTE:</b> This is not resettable.<br>Highest energy unit that the display<br>shows is MW (megawatts). If the<br>counter scrolls past 999.9 MW, no<br>unit will display.<br>See <i>Energy Counter</i> ( <i>P4.7.1</i> ) for<br>resettable version. |
| M4.6.3    | Operating Time    | y d hh:mm |     |     |         | 2298 | Displays the control units operating<br>time in years, days, hours:minutes.<br><b>NOTE:</b> This is not resettable.<br>See <i>Operating Time</i> ( <i>P4.7.3</i> ) for<br>resettable version.                                                                                                          |
| M4.6.7    | Run Time          | y d hh:mm |     |     |         | 2293 | Displays the motor run time in years, days, hours:minutes                                                                                                                                                                                                                                              |
| M4.6.11   | Power On Time     | y d hh:mm |     |     |         |      | Displays the power on time in<br>years, days, hours:minutes                                                                                                                                                                                                                                            |
| M4.6.15   | Start Cmd Counter |           |     |     |         | 2295 | Displays the number of times the power unit has been started.                                                                                                                                                                                                                                          |

# Trip Counters (M4.7)

Trip Counters contain the reset objects for energy usage and time clock, and are presented in the following table: *Table 76: Trip Counters.* 

| Structure | Parameter      | Unit      | Min | Max | Default | ID   | Description                                                                                                                                                                                                                                                                                   |
|-----------|----------------|-----------|-----|-----|---------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| M4.7.1    | Energy Counter | Varies    |     |     |         | 2296 | The amount of energy taken from<br>the supply.<br><b>NOTE:</b> This is resettable. Highest<br>energy unit that the display shows<br>is MW (megawatts). If the counter<br>scrolls past 999.9 MW, no unit will<br>display.<br>See <i>Energy Counter (M4.6.1)</i> for<br>non-resettable version. |
| M4.7.3    | Operating Time | y d hh:mm |     |     |         | 2299 | Displays the control units operating<br>time in years, days, hours:minutes.<br><b>NOTE:</b> This is resettable.<br>See <i>Operating Time (M4.6.3)</i> for<br>non-resettable version.                                                                                                          |

## Software Info (M4.8)

Software Info contains software/firmware specific information. **Software Package** (M4.8.1) is vital information for Technical Support when troubleshooting issues.

The software info settings are presented in the following table:

Table 77: Software Information Settings.

| Structure | Parameter        | Unit | Min | Max  | Default    | ID   | Description                                        |
|-----------|------------------|------|-----|------|------------|------|----------------------------------------------------|
| M4.6.1    | Software Package |      |     |      | FW0183V012 | 2524 | Software Package (Drive Firmware Revision String). |
| M4.8.4    | System Load      | %    | 0   | -100 |            | 2300 | Load on control unit CPU.                          |
| M4.8.5    | Application Name |      |     |      | HVAC       | 2525 | Name of Application.                               |
| M4.8.6    | Application ID   |      |     |      | 1114       | 837  | Application ID.                                    |
| M4.8.7    | Application Ver. |      |     |      | 117        | 838  | Application Version.                               |

# I/O and Hardware (M5)

Under this menu are the following sections related to the I/O and hardware of the drive:

Table 78: I/O and Hardware.

| Menu and Parameter Group   | Description                                                       |
|----------------------------|-------------------------------------------------------------------|
| Basic IO (M5.1)            | Provides status of I/O found on Slot A and Slot B.                |
| Slot C (M5.2)*             | Provides status of I/O found on Slot C.                           |
| Slot D (M5.3)*             | Provides status of I/O found on Slot D.                           |
| Slot E (M5.4)*             | Provides status of I/O found on Slot E.                           |
| Real Time Clock (M5.5)     | Configuration and status of the real time clock.                  |
| Power Unit Settings (M5.6) | Configuration and status of the fan and sine filter.              |
| Keypad (M5.7)              | Configuration of keypad specific information.                     |
| RS-485 (M5.8)              | Configuration and status of the RS-485 type fieldbus protocols.   |
| Ethernet (M5.9)            | Configuration and status of the Ethernet type fieldbus protocols. |

\* If an option board has been installed in the slot, the name of this menu will change to the card name (such as, OPTB5).

# Basic I/O (M5.1)

Displays the status of the Basic Slot A and Slot B I/O. See *I/O Configuration (M3.5)* for configuration information of the Basic I/O.

| Structure | Parameter       | Unit | Min | Max | Default | ID   | Description                      |
|-----------|-----------------|------|-----|-----|---------|------|----------------------------------|
| M5.1.1    | Digital Input 1 |      | OFF | ON  |         | 2502 | Status of Digital Input 1 Signal |
| M5.1.2    | Digital Input 2 |      | OFF | ON  |         | 2503 | Status of Digital Input 2 Signal |
| M5.1.3    | Digital Input 3 |      | OFF | ON  |         | 2504 | Status of Digital Input 3 Signal |
| M5.1.4    | Digital Input 4 |      | OFF | ON  |         | 2505 | Status of Digital Input 4 Signal |
| M5.1.5    | Digital Input 5 |      | OFF | ON  |         | 2506 | Status of Digital Input 5 Signal |

Table 79: Basic Slot A and Slot B I/O.

#### Chapter 4 - Parameters and Menu Structure

I/O and Hardware (M5)

| Structure | Parameter            | Unit | Min    | Max     | Default | ID   | Description                                                                                   |
|-----------|----------------------|------|--------|---------|---------|------|-----------------------------------------------------------------------------------------------|
| M5.1.6    | Digital Input 6      |      | OFF    | ON      |         | 2507 | Status of Digital Input 6 Signal                                                              |
| M5.1.7    | Analog Input 1 Mode  |      | 020 mA | 010 Vdc | 00 Vdc  | 2508 | Shows the selected mode (with<br>jumper) for analog input signal<br>1 = 020 mA<br>3 = 010 Vdc |
| M5.1.8    | Analog Input 1       | %    | 0      | 100     | 0       | 2509 | Status of Analog Input 1 Signal                                                               |
| M5.1.9    | Analog Input 2 Mode  |      | 020 mA | 010 Vdc | 020 mA  | 2510 | Shows the selected mode (with<br>jumper) for analog input signal<br>1 = 020 mA<br>3 = 010 Vdc |
| M5.1.10   | Analog Input 2       | %    | 0      | 100     | 0       | 2511 | Status of Analog Input 2 Signal                                                               |
| M5.1.11   | Analog Output 1 Mode |      | 020 mA | 010 Vdc | 020 mA  | 2512 | Shows the selected mode (with<br>jumper) for analog input signal<br>1 = 020 mA<br>3 = 010 Vdc |
| M5.1.12   | Analog Output 1      | %    | 0      | 100     |         | 2513 | Status of Analog Output 1 Signal                                                              |
| M5.1.13   | Relay Output 1       |      | OFF    | ON      |         | 2514 | Status of Relay Output 1 Signal                                                               |
| M5.1.14   | Relay Output 2       |      | OFF    | ON      |         | 2515 | Status of Relay Output 2 Signal                                                               |
| M5.1.15   | Relay Output 3       |      | OFF    | ON      |         | 2516 | Status of Relay Output 3 Signal                                                               |

## Slot C (M5.2)

Displays the status of the available I/O for the option card installed in Slot C. The available parameters change depending upon the option card installed. See the *I/O Option Board Type "B" User's Manual* (DPD01158) for a list of available option cards and their I/O types.

Table 80: I/O Slot C.

| Structure | Parameter                                                       | Min.   | Max.   | Default | Description                               |  |  |  |  |  |
|-----------|-----------------------------------------------------------------|--------|--------|---------|-------------------------------------------|--|--|--|--|--|
| M5.2.1    | I/O Monitor (depends upon the option card installed in slot C.) |        |        |         |                                           |  |  |  |  |  |
| M5.2.4    | Software Info                                                   |        |        |         |                                           |  |  |  |  |  |
| M5.2.4.1  | Version Number                                                  | Varies | Varies | Varies  | Displays the version of the option board. |  |  |  |  |  |
| M5.2.4.2  | Board Status                                                    |        |        |         | Displays status of the option board.      |  |  |  |  |  |

# Slot D (M5.3)

Displays the status of the available I/O for the option card installed in Slot D. The available parameters change depending upon the option card installed. See the *I/O Option Board Type "B" User's Manual* (DPD01158) for a list of available option cards and their I/O types.

| Table | 81. | I/O | Slot | Л                    |
|-------|-----|-----|------|----------------------|
| Table | 01. | 110 | 5101 | $\boldsymbol{\nu}$ . |

| Structure | Parameter                                                     | Min.          | Max.   | Default | Description                               |  |  |  |  |  |
|-----------|---------------------------------------------------------------|---------------|--------|---------|-------------------------------------------|--|--|--|--|--|
| M5.2.1    | O Monitor (depends upon the option card installed in slot D.) |               |        |         |                                           |  |  |  |  |  |
| M5.2.4    | Software Info                                                 | Software Info |        |         |                                           |  |  |  |  |  |
| M5.2.4.1  | Version Number                                                | Varies        | Varies | Varies  | Displays the version of the option board. |  |  |  |  |  |
| M5.2.4.2  | Board Status                                                  |               |        |         | Displays status of the option board.      |  |  |  |  |  |

# Slot E (M5.4)

Displays the status of the available I/O for the option card installed in Slot E. The available *parameters change depending upon the option card installed. See the I/O Option Board Type "B" User's Manual* (DPD01158) for a list of available option cards and their I/O types.

Table 82: I/O Slot E.

| Structure | Parameter                                                      | Min.          | Max.   | Default | Description                               |  |  |  |
|-----------|----------------------------------------------------------------|---------------|--------|---------|-------------------------------------------|--|--|--|
| M5.2.1    | /O Monitor (depends upon the option card installed in slot E.) |               |        |         |                                           |  |  |  |
| M5.2.4    | Software Info                                                  | Software Info |        |         |                                           |  |  |  |
| M5.2.4.1  | Version Number                                                 | Varies        | Varies | Varies  | Displays the version of the option board. |  |  |  |
| M5.2.4.2  | Board Status                                                   |               |        |         | Displays status of the option board.      |  |  |  |

# Real time clock (M5.5)

Table 83: Real Time Clock Settings.

| Structure | Parameter       | Unit     | Min           | Max            | Default   | ID   | Description                                                                   |
|-----------|-----------------|----------|---------------|----------------|-----------|------|-------------------------------------------------------------------------------|
| M5.5.1    | Battery State   |          | Not Installed | Change Battery | Installed | 2205 | Status of battery<br>1 = Not installed<br>2 = Installed<br>3 = Change Battery |
| M5.5.2    | Time            | hh:mm:ss |               |                |           | 2201 | Current time of day.                                                          |
| M5.5.3    | Date            | dd.mm    |               |                |           | 2202 | Current date.                                                                 |
| M5.5.4    | Year            | уууу     |               |                |           | 2203 | Current year.                                                                 |
| M5.5.5    | Daylight Saving |          | Off           | Russia         | Off       | 2204 | Daylight Saving Rule<br>1 = Off<br>2 = EU<br>3 = US<br>4 = Russia             |

# Power unit settings (M5.6)

## Fan (M5.6.1)

The cooling fan operates in Optimized or Always-On mode. In the Optimized mode, fan speed is controlled according to the drive's internal logic that receives data from temperature measurements; the fan stops five minutes after the drive is in a ready state. In Always-On mode, the fan runs at full speed, without stopping.

| Structure | Parameter                  | Unit | Min       | Max       | Default | ID   | Description                                                                                                              |
|-----------|----------------------------|------|-----------|-----------|---------|------|--------------------------------------------------------------------------------------------------------------------------|
| P5.6.1.1  | Fan Control Mode           |      | Always On | Optimized | 1       | 2377 | Defines the heat sink cooling fan<br>mode:<br>0 = Always On<br>1 = Optimized                                             |
| M5.6.1.5  | Fan Lifetime               | h    |           |           |         | 849  | Displays the cooling fan's run time<br>in hours.<br><b>NOTE: Fan Lifetime Reset</b><br>(P5.6.1.7) will reset this value. |
| P5.6.1.6  | Fan Lifetime Alarm<br>Lim. | h    | 0         | 200000    | 50000   | 824  | Defines the alarm limit for the cooling fan's useful life.                                                               |
| P5.6.1.7  | Fan Lifetime Reset         |      |           |           |         | 823  | Reset parameter for the <b>Fan</b><br>Lifetime (M5.6.1.5)                                                                |

#### Table 84: Cooling Fan Settings.

## Sine Filter (M5.6.4)

Sine filter support restricts overmodulation depth and prevents thermal management functions from decreasing switching frequency.

Table 85: Sine Filter Settings.

| Structure | Parameter   | Unit | Min      | Max     | Default  | ID   | Description                           |
|-----------|-------------|------|----------|---------|----------|------|---------------------------------------|
| P5.6.4.1  | Sine Filter |      | Disabled | Enabled | Disabled | 2527 | Enable parameter for the Sine Filter. |

## Keypad (M5.7)

Configuration of the keypad-specific items such as contrast, backlight time, and the default screen are completed in this section.

In Firmware FW0183V011 and earlier, the display does not default to any particular place. Whatever was last entered on the screen will remain there until changed. However, in FW0183V012 and later, the screen defaults to the Multimonitor display after two minutes of inactivity of the keypad. If you prefer a different default screen, use the parameters in this section to make those changes.

| Structure | Parameter      | Unit | Min  | Max          | Default      | ID   | Description                                                                                                                                                                                                                                                                                                             |
|-----------|----------------|------|------|--------------|--------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P5.7.1    | Timeout Time   | min  | 0    | 60           | 0            | 804  | Time until display returns to page<br>defined in the <b>Default Page</b> (P5.7.2)<br>0 = Not used                                                                                                                                                                                                                       |
| P5.7.2    | Default Page   |      | None | Multimonitor | Multimonitor | 2318 | Defines the default page to appear<br>after <b>Timeout Time</b> (P5.7.1) has<br>passed.<br>0 = None<br>1 = Enter Menu Index (see <b>Menu</b><br><b>Index</b> (P5.7.3))<br>2 = Main Menu<br>3 = Control Page<br>4 = Multimonitor<br><b>NOTE:</b> Recommended to use<br>Multimonitor.                                     |
| P5.7.3    | Menu Index     |      |      |              | 0.0.0.0      | 2499 | Defines the parameter (in accordance<br>with menu structure) to be displayed<br>as default page when <b>Default Page</b><br>(P5.7.2) is set to a value of <b>Enter</b><br><b>Menu Index</b> .<br>For example, if <b>Output Frequency</b><br>(M2.2.1) is to be displayed, set this<br>parameter to a value of 2.2.1.0.0. |
| P5.7.4    | Contrast       | %    | 30   | 70           | 50           | 830  | Set the contrast of the display.                                                                                                                                                                                                                                                                                        |
| P5.7.5    | Backlight Time | min  | 0    | 60           | 5            | 818  | Defines the amount of time of keypad<br>inactivity that must occur before the<br>backlight of the display turns off.<br>0 = backlight always ON.                                                                                                                                                                        |

#### Table 86: Keypad Configuration Settings.

### Example:

To set the drive's display to default to the Output Frequency display after five minutes, complete the following steps:

- 1. Set Timeout Time (P5.7.1) to a value of 5.
- 2. Set Default Page (P5.7.2) to a value of Enter Menu Index.
- 3. Set Menu Index (P5.7.3) to a value of 2.2.1.

### RS-485 (M5.8)

The RS-485 settings are used to define and configure the desired the fieldbus protocol.

The wiring for RS-485 networks is the same no matter what fieldbus protocol is used. Connect to the appropriate terminals (A = negative; B = positive) as shown in the figure below:





If the Siemens BT300 HVAC Drive is the last device on the bus, the bus termination may be required. See the figure below for enabling to bus termination:



Figure 35: Bus Termination.

# Common Settings (M5.8.1)

Common settings are presented in the following table:

| Table 87: Common Settings. |
|----------------------------|
|----------------------------|

| Structure | Parameter | Min.        | Max.       | Default     | ID   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------|-----------|-------------|------------|-------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P5.8.1.1  | Protocol  | No Protocol | Modbus RTU | No Protocol | 2208 | Defines the RS-485 base fieldbus protocol to<br>be used:<br>0 = No Protocol<br>1 = N2<br>2 = BACnet MS/TP<br>3 = P14 = Modbus RTU<br>NOTE: A new menu will be accessible at<br>M5.8.3 depending upon the protocol selected.<br>Configuration for protocol communications will<br>be within that menu.<br>NOTE: This selection enables monitoring only.<br>If control (start/stop and speed reference) is to<br>be from fieldbus, then Ctrl. Place Auto (P3.3.1)<br>must be set to FieldbusCTRL. |

## N2 (M5.8.3)

The N2 communications protocol is used by Johnson Controls and others to connect terminal unit controllers to supervisory controllers. It is open to any manufacturer and based upon a simple ASCII protocol widely used in the process control industry.

The physical characteristics of the N2 bus is an RS-485 3wire connection, with a maximum of 100 devices over a 4,000 foot distance, running at 9,600 bps. Logically, the N2 is a master-slave protocol; the supervisory controller is normally the master. Data is partitioned into common HVAC control objects, such as analog input, analog output, binary input, and binary output. N2 messaging supports the reading, writing, and overriding of these points. Additionally, there are messages defined to perform uploads and downloads of devices as well as to direct memory reads and writes.

The N2 fieldbus protocol supports the following point types:

- Analog Input (AI)
- Analog Output (AO)
- Binary Input (BI)
- Binary Output (BO)
- Internal Integer (ADI)

If **Protocol** (P5.8.1.1) is set to a value of **N2**, then configuration and status parameters related to the N2 fieldbus protocol are made available as listed in the Parameters and Monitoring sections below.

## Parameters (M5.8.3.1)

The following configuration parameters are available for the N2 fieldbus protocol:

Table 88: N2 Protocol Parameters.

| Menu       | Parameter              | ID   | Unit | Mn. | Max. | Default | Description                                                                                                      |
|------------|------------------------|------|------|-----|------|---------|------------------------------------------------------------------------------------------------------------------|
| P5.8.3.1.1 | Device Address         | 2350 |      | 1   | 255  | 1       | Defines the unique slave address to be used by the drive on the N2 network.                                      |
| P5.8.3.1.2 | Communications Timeout | 2351 | S    | 0   | 255  | 10      | Defines the amount of time in which a packet is not received before a communications timeout is faulted/alarmed. |

# Monitoring (M5.8.3.2)

The following monitoring values are available for the N2 fieldbus protocol:

| Menu       | Parameter                | ID   | Min          | Max     | Description                                                                                                                                                         |
|------------|--------------------------|------|--------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| M5.8.3.2.1 | Fieldbus Protocol Status | 2399 | Initializing | Faulted | Displays the current protocol status as follows:<br>0 = Initializing<br>1 = Stopped<br>2 = Operational<br>3 = Faulted                                               |
| M5.8.3.2.2 | Communication Status     | 2400 | 0.0          | 99.999  | Displays the number of bad frames and good<br>messages in the following format:<br>xx.yyy where xx indicates the bad frames and yyy<br>indicates the good messages. |
| M5.8.3.2.3 | Invalid Data             | 2041 |              |         | Active if one or more of the fields in a fieldbus packet contains a value that is out of the expected range.                                                        |
| M5.8.3.2.4 | Invalid Commands         | 2402 |              |         | Displays the number of commands that are not appropriate for the field or record.                                                                                   |
| M5.8.3.2.5 | Command NACK             | 2403 |              |         | Displays the number of negative acknowledgments due to problems with the device, so the command was ignored.                                                        |
| M5.8.3.2.6 | Control Word             | 2402 |              |         | Displays the control word in a bit coded format as<br>follows:<br>B0 = Start/Stop<br>B2 = Fault Reset                                                               |
| M5.8.3.2.7 | Status Word              | 2405 |              |         | Displays the status word in a bit coded format as follows:                                                                                                          |

Table 89: N2 Fieldbus Protocol Monitoring.

# N2 Point Map

# Analog Inputs (AI)

All analog inputs (AI) points have the following features:

- Support Change of State (COS) reporting based on high and low warning limits.
- Support Change of State (COS) reporting based on high and low alarm limits.
- Support Change of State (COS) reporting based on override status.
- Always considered reliable and never out of range.
- Writing alarm and warning limit values beyond the range that can be held by the drive's internal variable will result in having the limit replaced by the **Invalid Float** value even though the message is acknowledged. The net results will be the inactivation of the alarm or warning (the same as if the original out of range value was used).
- Overriding is supported from the standpoint that the "Override Active" bit will be set and the value reported to the N2 network will be the overridden value. However, the value in the drive remains unchanged. Therefore, the N2 system should be set up to prevent overriding AI point or have an alarm condition activated when an AI point is overridden.
- Overriding an AI point with a value beyond the limit allowed by the drive's internal variable will result in an Invalid Data error and the override status and value will remain unchanged.

Table 90: N2 Analog Inputs.

| NPT | NPA | Description            | Units | Note             |
|-----|-----|------------------------|-------|------------------|
| AI  | 1   | Speed Setpoint         | Hz    | 2 decimal places |
| AI  | 2   | Output Frequency       | Hz    | 2 decimal places |
| AI  | 3   | Motor Speed            | RPM   | 0 decimal places |
| AI  | 4   | Load (power)           | %     | 1 decimal        |
| AI  | 5   | Megawatt Hours         | MWh   | Total counter    |
| AI  | 6   | Motor Current          | А     | 2 decimal places |
| AI  | 7   | Bus Voltage            | V     | 0 decimal places |
| AI  | 8   | Motor Volts            | V     | 1 decimal place  |
| AI  | 9   | Heatsink Temperature   | °C    | 0 decimal places |
| AI  | 10  | Motor Torque           | %     | 1 decimal place  |
| AI  | 11  | Operating Days (trip)  | Day   | 0 decimal places |
| AI  | 12  | Operating Hours (trip) | Hour  | 0 decimal places |
| AI  | 13  | Kilowatt Hours (trip)  | kWh   | Trip Counter     |
| AI  | 14  | Torque Reference       | %     | 1 decimal place  |
| AI  | 15  | Motor Temperature Rise | %     | 1 decimal place  |
| AI  | 16  | FBProcessDataOut1*     |       | 0 decimal places |
| AI  | 17  | FBProcessDataOut2*     |       | 0 decimal places |
| V   | 18  | FBProcessDataOut3*     |       | 0 decimal places |
| V   | 19  | FBProcessDataOut4*     |       | 0 decimal places |
| AI  | 20  | FBProcessDataOut5*     |       | 0 decimal places |
| AI  | 21  | FBProcessDataOut6*     |       | 0 decimal places |
| AI  | 22  | FBProcessDataOut7*     |       | 0 decimal places |
| AI  | 23  | FBProcessDataOut8*     |       | 0 decimal places |

## Binary Inputs (BI)

All binary inputs (BI) points have the following features:

- Support Change of State (COS) reporting based on current state.
- Support Change of State (COS) reporting based on alarm condition.
- Support Change of State (COS) reporting based on override status.
- Always considered reliable.
- Overriding is supported from the standpoint that the "Override Active" bit will be set and the value reported to the N2 network will be the overridden value. However, the value in the drive remains unchanged. Therefore, the N2 system should be set up to disallow overriding BI point or have an alarm condition activated when a BI point is overridden.

| Table | 91: 1  | N2   | Binarv  | Inputs. |
|-------|--------|------|---------|---------|
| rubic | / 1. 1 | VZ 1 | Jinuary | mpuis.  |

| NPT | NPA | Description | 0 =       | 1 =              |
|-----|-----|-------------|-----------|------------------|
| BI  | 1   | Ready       | Not Ready | Ready            |
| BI  | 2   | Run         | Stop      | Run              |
| BI  | 3   | Direction   | Clockwise | Counterclockwise |

| NPT | NPA | Description              | 0 =         | 1 =     |
|-----|-----|--------------------------|-------------|---------|
| BI  | 4   | Faulted                  | Not Faulted | Faulted |
| BI  | 5   | Alarm                    | Not Alarm   | Alarm   |
| BI  | 6   | Ref. Frequency reached   | False       | True    |
| BI  | 7   | Motor running zero speed | False       | True    |
| BI  | 8   | Flux ready               | Not Ready   | Ready   |

# Analog Outputs (AO)

All analog outputs (AO) points have the following features:

- Support Change of State (COS) reporting based on override status.
- Always considered reliable.
- Overriding of the AO points is the method used to change a value. Overriding an AO point with a value beyond the limit allowed by the drive's internal variable will result in an Invalid Data error and the override status and value will remain unchanged. If the overridden value is beyond the drive's parameter limit but within the range that will fit in the variable, an acknowledge response is given and the value will be internally clamped to its limit.

| NPT | NPA | Description              | Units | Note                 |
|-----|-----|--------------------------|-------|----------------------|
| AO  | 1   | Comms Speed              | %     | 2 decimal places     |
| AO  | 2   | Current Limit            | А     | 2 decimal places     |
| AO  | 3   | Minimum Speed            | Hz    | 2 decimal places     |
| AO  | 4   | Maximum Speed            | Hz    | 2 decimal places     |
| AO  | 5   | Accel Time               | s     | 1 decimal place      |
| AO  | 6   | Decel Time               | s     | 1 decimal place      |
| AO  | 7   | FBProcessDataIn1*        |       | 2 decimal places     |
| AO  | 8   | FBProcessDataIn2*        |       | 2 decimal places     |
| AO  | 9   | FBProcessDataIn3*        |       | 2 decimal places     |
| AO  | 10  | FBProcessDataIn4*        |       | 2 decimal places     |
| AO  | 11  | FBProcessDataIn5*        |       | 2 decimal places     |
| AO  | 12  | FBProcessDataIn6*        |       | 2 decimal places     |
| AO  | 13  | FBProcessDataIn7*        |       | 2 decimal places     |
| AO  | 14  | FBProcessDataIn8*        |       | 2 decimal places     |
| AO  | 15  | Any parameter Read/Write |       | Depends on parameter |

#### Table 92: N2 Analog Outputs.

## Binary Outputs (BO)

All binary outputs (BO) points have the following features:

- Support Change of State (COS) reporting based on override status.
- Always considered reliable.
- Overriding BO points control the drive. These points are input commands to the drive. When released, the drive's internal value remains at its last overridden value.

#### Table 93: N2 Binary Outputs.

| NPT | NPA | Description             | 0 =     | 1 =     |
|-----|-----|-------------------------|---------|---------|
| во  | 1   | Comms Start/Stop        | Stop    | Start   |
| во  | 2   | Comms Forward/Reverse   | Forward | Reverse |
| во  | 3   | Reset Fault             | N/A     | Reset   |
| во  | 4   | Stop mode information 1 |         |         |
| во  | 5   | Stop mode information 2 |         |         |
| во  | 6   | Force ramp to zero      |         |         |
| во  | 7   | Freeze ramp             |         |         |
| во  | 8   | Reference to zero       |         |         |
| во  | 9   | BusCtrl                 |         |         |
| BO  | 10  | BusRef                  |         |         |

### Internal Integers (ADI)

All Internal Integer (ADI) points have the following features:

- Do not support Change of State (COS) reporting.
- Can be overridden and the "Override Active" bit will be set. However, the internal value is unchanged (read only).

Table 94: Internal Integers.

| NPT | NPA | Description       | Units |
|-----|-----|-------------------|-------|
| ADI | 1   | Active Fault Code |       |
| ADI | 2   | Control Word      |       |
| ADI | 3   | Status Word       |       |
| ADI | 4   | Any Parameter ID  |       |

### N2 Protocol Quick Setup

For monitoring of objects using the N2 protocol, complete the following changes:

- 1. Select: Main Menu > I/O and Hardware (M5) > RS-485 (M5.8) > Common Settings (M5.8.1) > Protocol (P5.8.1.1) > Edit.
- 2. Select N2 from the list and press the button.
- 3. Select: Main Menu > I/O and Hardware (M5) > RS-485 (M5.8) > N2 (M5.8.3) > Parameters (M5.8.3.1) > Device Address (P5.8.3.1.1) > Edit.
- 4. Enter the desired network device address and press the OK button.
- 5. Select: Main Menu > I/O and Hardware (M5) > RS-485 (M5.8) > N2 (M5.8.3) > Parameters (M5.8.3.1) > Comm. Timeout (P5.8.3.1.2) > Edit.
- 6. Enter the desired time for drive to monitor for a communications loss and press the button. A value of 0 disables this monitoring.

For commanding Start/Stop and Speed Reference using the N2 protocol, complete the following steps:

- 1. Complete all settings required for Monitoring as listed above.
- 2. Set Ctrl. Place Auto (P3.2.1) to a value of FieldbusCTRL.

For commanding Start/Stop through the N2 protocol and Speed Reference through an Analog Input, complete the following changes:

- 1. Complete all settings required for Monitoring as listed above.
- 2. Set Ctrl. Place Auto (P3.2.1) to a value of FieldbusCTRL.
- 3. Set FieldbusCtrl Ref (P3.3.9) to a value of Al1 or Al2 (depending upon which Al is in use).

For commanding Start/Stop through a Digital Input and Speed Reference through the N2 protocol, complete the following changes:

- 1. Complete all settings required for Monitoring as listed above.
- 2. Set Ctrl. Place Auto (P3.2.1) to a value of I/O Control.
- 3. Set I/O A Ctrl Ref (P3.3.3) to a value of Fieldbus.

## BACnet MS/TP (M5.8.3)

BACnet stands for Building Automation and Control Networks. It is the common name for the communications standard ISO 16484-5 which defines the methods and the protocol for cooperating building automation devices to communicate. Devices can be designed to operate using BACnet communication protocol, as well as utilizing BACnet protocol to communicate between systems. BACnet is an internationally accepted protocol for building automation and control over a communications network.

BACnet provide a method by which computer-based control equipment form different manufacturers can work together, or "interoperate". To achieve, components must be able to exchange and understand BACnet data messages.

The Siemens BT300 is standard equipped with BACnet support.

If **Protocol** (P5.8.1.1) is set to a value of **BACnet MS/TP**, then configuration and status parameters related to the BACnet MS/TP fieldbus protocol are made available.

## Parameters (M5.8.3.1)

The following configuration parameters are available for the BACnet MS/TP fieldbus protocol:

| Menu       | Parameter              | ID   | Unit | Min      | Max     | Default  | Description                                                                                                      |
|------------|------------------------|------|------|----------|---------|----------|------------------------------------------------------------------------------------------------------------------|
| P5.8.3.1.1 | Baud Rate              | 2392 | bps  | 9600     | 76800   | 9600     | on the network as follows:<br>1 = 9600<br>2 = 19200<br>3 = 38400<br>4 = 76800                                    |
| P5.8.3.1.2 | Autobauding            | 2330 |      | Disabled | Enabled | Disabled | Defines if autobauding can be used to configure the <b>Baud Rate</b> (P5.8.3.1.1).                               |
| P5.8.3.1.3 | MAC Address            | 2331 |      | 1        | 127     | 1        | Defines the unique device address for the RS-485 network.                                                        |
| P5.8.3.1.4 | Instance Number        | 2332 |      | 0        | 4194303 | 0        | Defines the unique device address for the IP network if a IP-MS/TP router is used.                               |
| P5.8.3.1.5 | Communications Timeout | 2333 | S    | 0        | 65535   | 10       | Defines the amount of time in which a packet is not received before a communications timeout is faulted/alarmed. |

Table 95: BACnet MS/TP Parameters.

# Monitoring (M5.8.3.2)

The following monitoring values are available for the BACnet MS/TP fieldbus protocol:

Table 96: BACnet MS/TP Monitoring.

| Menu       | Parameter                | ID   | Min          | Max             | Description                                                                                                                                                         |
|------------|--------------------------|------|--------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| M5.8.3.2.1 | Fieldbus Protocol Status | 2393 | Initializing | Faulted         | Displays the current protocol status as<br>follows:<br>0 = Initializing<br>1 = Stopped<br>2 = Operational<br>3 = Faulted                                            |
| M5.8.3.2.2 | Communication Status     | 2394 | 0.0          | 99.999          | Displays the number of bad frames and<br>good messages in the following format:<br>xx.yyy where xx indicates the bad frames<br>and yyy indicates the good messages. |
| M5.8.3.2.3 | Actual Instance          | 2395 |              |                 | Displays the actual device BACnet instance number.                                                                                                                  |
| M5.8.3.2.4 | Fault Code               | 2396 | None         | Baud Rate Fault | Displays the fieldbus communications fault<br>status as follows:<br>0 = None<br>1 = Sole Master<br>2 = Duplicated MAC ID<br>3 = Baud Rate Fault                     |
| M5.8.3.2.5 | Control Word             | 2397 |              |                 | Displays the control word in a bit-coded<br>format as follows:<br>B0 = Start/Stop<br>B2 = Fault Reset                                                               |
| M5.8.3.2.6 | Status Word              | 2398 |              |                 | Displays the status word in a bit-coded<br>format as follows:<br>B0 = Ready<br>B2 = Fwd/Rev<br>B4 = Alarm<br>B6 = Zero Speed<br>B3 = Fault<br>B5 = At Reference     |

# BACnet Object List

The BACnet object list was enhanced with FW0183V012. If using Firmware Revision FW0183V011 or earlier, see the *Siemens BT300 HVAC Drive Protocol Installation and User Manual* (DPD01162) for further information.

# Analog Inputs (AI)

The analog inputs support the following BACnet properties:

- Event State
- Object Identifier
- Object Name
- Object Type
- Out of Service
- Present Value
- Status Flags
- Units

#### Table 97: BACnet Analog Inputs.

| Instance ID | Object Name | Description                         | Units | PV Access | Menu    |
|-------------|-------------|-------------------------------------|-------|-----------|---------|
| AI_0        | ANALOG IN 1 | This is the value of Analog Input 1 | PCT   | R         | M2.2.13 |
| AI_1        | ANALOG IN 2 | This is the value of Analog Input 2 | PCT   | R         | M2.2.14 |

## Binary Inputs (BI)

The binary inputs support the following BACnet properties:

- Active Text
- Event State
- Inactive Text
- Object Identifier
- Object Name
- Object Type
- Out of Service
- Present Value
- Status Flags

#### Table 98: BACnet Binary Inputs.

| Instance ID | Object Name | Description                       | Active/Inactive Text | PV Access | Menu   |
|-------------|-------------|-----------------------------------|----------------------|-----------|--------|
| BI_0        | DI1 STATUS  | Status of digital input 1 signal. | ON/OFF               | R         | M5.1.1 |
| BI_1        | DI2 STATUS  | Status of digital input 2 signal. | ON/OFF               | R         | M5.1.2 |
| BI_2        | DI3 STATUS  | Status of digital input 3 signal. | ON/OFF               | R         | M5.1.3 |
| BI_3        | DI4 STATUS  | Status of digital input 4 signal. | ON/OFF               | R         | M5.1.4 |
| BI_4        | DI5 STATUS  | Status of digital input 5 signal. | ON/OFF               | R         | M5.1.5 |
| BI_5        | DI6 STATUS  | Status of digital input 6 signal. | ON/OFF               | R         | M5.1.6 |

# Analog Outputs (AO)

The analog outputs support the following BACnet properties:

- Event State
- Object Identifier
- Object Name
- Object Type
- Out of Service
- Present Value
- Priority Array
- Relinquish Default
- Status Flags
- Units

#### Table 99: BACnet Analog Outputs.

| Instance ID | Object Name  | Description                           | Units | PV Access | Menu    |
|-------------|--------------|---------------------------------------|-------|-----------|---------|
| AO_0        | ANALOG OUT 1 | Analog output command, if configured. | РСТ   | С         | M2.2.15 |

# Binary Outputs (BO)

The binary outputs support the following BACnet properties:

- Active Text
- Event State
- Inactive Text
- Object Identifier
- Object Name
- Object Type
- Out of Service
- Present Value
- Priority Array
- Relinquish Default
- Status Flags

Table 100: BACnet Binary Outputs.

| Instance ID | Object Name     | Description                                                | Active/Inactive<br>Text | PV Access | Menu               |
|-------------|-----------------|------------------------------------------------------------|-------------------------|-----------|--------------------|
| BO_0        | RO1 CMD         | This object is the command of the state for Relay Output 1 | ON/OFF                  | С         | FB ControlWord B13 |
| BO_1        | RO2 CMD         | This object is the command of the state for Relay Output 2 | ON /OFF                 | С         | FB ControlWord B14 |
| BO_2        | RO3 CMD         | This object is the command of the state for Relay Output 3 | ON /OFF                 | С         | FB ControlWord B15 |
| BO_3        | RUN ENABLE      | Run Enable                                                 | ENABLE /<br>DISABL      | С         |                    |
| BO_4        | CMD RUN<br>STOP | Run Stop Command                                           | RUN / STOP              | С         | FB ControlWord B0  |
| BO_5        | CMD FWD<br>REV  | Forward Reverse Command                                    | REVRSE /<br>FORWRD      | С         | FB ControlWord B1  |

# Analog Values (AV)

The analog value support the following BACnet properties:

- Event State
- Object Identifier
- Object Name
- Object Type
- Out of Service
- Present Value
- Priority Array\*
- Relinquish Default\*
- Status Flags
- Units

\* For commandable values only.

I/O and Hardware (M5)

| Instance ID | Object Name  | Description                          | Units | PV Access | Menu    |
|-------------|--------------|--------------------------------------|-------|-----------|---------|
| AV_0        | SPEED REF    | Speed Reference, % of nominal speed. | PCT   | С         |         |
| AV_1        | FREQ STPT    | Frequency Setpoint                   | Hz    | R         |         |
| AV_2        | OUTPUT PCT   | Output Frequency in %                | РСТ   | R         |         |
| AV_3        | OUTPUT FREQ  | Output Frequency                     | Hz    | R         | M2.2.1  |
| AV_4        | MOTOR SPEED  | Motor Speed                          | rpm   | R         | M2.2.3  |
| AV_5        | MOTOR CRRNT  | Motor Current                        | А     | R         | M2.2.4  |
| AV_6        | MOTOR VLTG   | Motor Voltage                        | V     | R         | M2.2.9  |
| AV_7        | MOTOR TORQUE | Motor Torque                         | РСТ   | R         | M2.2.5  |
| AV_8        | MOTOR TEMP   | Motor Temperature                    | РСТ   | R         | M2.2.12 |
| AV_9        | LOAD         | Motor Shaft Power                    | РСТ   | R         | M2.2.7  |
| AV_10       | KW HOURS     | Kilowatt Hours (Resettable)          | kWh   | R         |         |
| AV_11       | KW HOURS TOT | Kilowatt Hours (Non-Resettable)      | kWh   | R         |         |
| AV_12       | OPER DAYS    | Operating Days (Resettable)          | Day   | W         |         |
| AV_13       | OPER HOURS   | Operating Hours (Resettable)         | Hour  | W         |         |
| AV_14       | DC LINK VLTG | DC Link Voltage                      | V     | R         | M2.2.10 |
| AV_15       | DRIVE TEMP   | Heatsink Temperature                 | DEG   | R         | M2.2.11 |
| AV_16       | ACTIVE FAULT | Active Fault Code                    |       | R         | M2.2.18 |
| AV_17       | LAST FAULT 1 | Most recent fault                    |       | R         |         |
| AV_18       | LAST FAULT 2 | Second most recent fault             |       | R         |         |
| AV_19       | LAST FAULT 3 | Third most recent fault              |       | R         |         |
| AV_20       | FBDATAOUT 01 | Fieldbus Process Data Out 1          |       | R         | P3.6.1  |
| AV_21       | FBDATAOUT 02 | Fieldbus Process Data Out 2          |       | R         | P3.6.2  |
| AV_22       | FBDATAOUT 03 | Fieldbus Process Data Out 3          |       | R         | P3.6.3  |
| AV_23       | FBDATAOUT 04 | Fieldbus Process Data Out 4          |       | R         | P3.6.4  |
| AV_24       | FBDATAOUT 05 | Fieldbus Process Data Out 5          |       | R         | P3.6.5  |
| AV_25       | FBDATAOUT 06 | Fieldbus Process Data Out 6          |       | R         | P3.6.6  |
| AV_26       | FBDATAOUT 07 | Fieldbus Process Data Out 7          |       | R         | P3.6.7  |
| AV_27       | FBDATAOUT 08 | Fieldbus Process Data Out 8          |       | R         | P3.6.8  |
| AV_28       | FB DATA IN 1 | Fieldbus Process Data In 1           |       | С         | M2.8.3  |
| AV_29       | FB DATA IN 2 | Fieldbus Process Data In 2           |       | С         | M2.8.4  |
| AV_30       | FB DATA IN 3 | Fieldbus Process Data In 3           |       | С         | M2.8.5  |
| AV_31       | FB DATA IN 4 | Fieldbus Process Data In 4           |       | С         | M2.8.6  |
| AV_32       | FB DATA IN 5 | Fieldbus Process Data In 5           |       | С         | M2.8.7  |
| AV_33       | FB DATA IN 6 | Fieldbus Process Data In 6           |       | С         | M2.8.8  |
| AV_34       | FB DATA IN 7 | Fieldbus Process Data In 7           |       | С         | M2.8.9  |
| AV_35       | FB DATA IN 8 | Fieldbus Process Data In 8           |       | С         | M2.8.10 |
| AV_36       | FBCTRLWORDLO | Fixed control word first 16 bits     |       | С         | M2.8.1  |

#### Table 101: BACnet Analog Values.

### Chapter 4 - Parameters and Menu Structure

I/O and Hardware (M5)

| Instance ID | Object Name  | Description                     | Units | PV Access | Menu      |
|-------------|--------------|---------------------------------|-------|-----------|-----------|
| AV_37       | FBCTRLWORDHI | Fixed control word last 16 bits |       | с         | M2.8.1    |
| AV_38       | FBSTATWORDLO | Fixed status word first 16 bits |       | R         | M2.8.11   |
| AV_39       | FBSTATWORDHI | Fixed status word last 16 bits  |       | R         | M2.8.11   |
| AV_40       | MIN FREQ     | Minimum Frequency               | Hz    | W         | P3.3.1    |
| AV_41       | MAX FREQ     | Maximum Frequency               | Hz    | W         | P3.3.2    |
| AV_42       | ACCEL TIME   | Acceleration Time (1)           | s     | W         | P3.4.2    |
| AV_43       | DECEL TIME   | Deceleration Time (1)           | s     | W         | P3.4.3    |
| AV_44       | CURRENT LMT  | Current Limit                   | А     | W         | P3.1.1.7  |
| AV_45       | MTRNOM CRRNT | Motor Nominal Current           | А     | W         | P3.1.1.4  |
| AV_46       | MTRNOM POWER | Motor Nominal Power             | HP    | W         | P3.1.1.6  |
| AV_47       | MTRNOM SPEED | Motor Nominal Speed             | rpm   | W         | P3.1.1.3  |
| AV_48       | MTRNOM VLTG  | Motor Nominal Voltage           | V     | W         | P3.1.1.1  |
| AV_49       | MTRNOM FREQ  | Motor Nominal Frequency         | Hz    | W         | P3.1.1.2  |
| AV_50       | MOTOR COSPHI | Motor COSPHI                    |       | W         | P3.1.1.5  |
| AV_51       | BYPASS       | Bypass Type                     |       | R         | P3.17.4   |
| AV_52       | BYP SAFESTAT | Bypass Safety Status            |       | R         |           |
| AV_53       | BYP RUN TIME | Bypass Run Time                 |       | R         |           |
| AV_54       | PID1 GAIN    |                                 | %     | R         | P3.12.1.1 |
| AV_55       | PID1 I TIME  |                                 | s     | R         | P3.12.1.2 |
| AV_56       | PID1 D TIME  |                                 | s     | R         | P3.12.1.3 |
| AV_57       | PID1 STATUS  |                                 |       | R         | M2.4.5    |
| AV_58       | PID1 STPT    |                                 |       | R         | M2.4.1    |
| AV_59       | PID1 FDBK    |                                 |       | R         | M2.4.2    |
| AV_60       | PID1 OUTPUT  |                                 |       | R         | M2.4.4    |
| AV_61       | PID2 GAIN    |                                 |       | R         | P3.13.1.3 |
| AV_62       | PID2 I TIME  |                                 | s     | R         | P3.13.1.4 |
| AV_63       | PID2 D TIME  |                                 | s     | R         | P3.13.1.5 |
| AV_64       | PID2 STATUS  |                                 |       | R         | M2.5.5    |
| AV_65       | PID2 STPT    |                                 |       | R         | M2.5.1    |
| AV_66       | PID2 FDBK    |                                 |       | R         | M2.5.2    |
| AV_67       | PID2 OUTPUT  |                                 | РСТ   | R         | M2.5.4    |
| AV_68       | ANY PARAM    | ID number that is use in AV71   |       | W         |           |
| AV_69       | ANY VALUE    | Value of ID defined by AV70     |       | W         |           |

# **Binary Values (BV)**

The binary outputs support the following BACnet properties:

- Active Text
- Event State
- Inactive Text
- Object Identifier
- Object Name
- Object Type
- Out of Service
- Present Value
- Priority Array\*
- Relinquish Default\*
- Status Flags

Table 102: BACnet Binary Values.

| Instance ID | Object Name  | Description                                                   | Active/Inactive Text | PV Access | Menu    |
|-------------|--------------|---------------------------------------------------------------|----------------------|-----------|---------|
| BV_0        | READY STATE  | Status of the Ready State.                                    | READY/NOTRDY         | R         | V2.2.17 |
| BV_1        | RUNENBL STAT | Status of Run Enable, regardless of the control source.       | ENABLE/DISABL        | R         | V2.2.17 |
| BV_2        | RUNSTP STAT  | Status of Run Stop, regardless of the control source.         | RUN/STOP             | R         | V2.2.17 |
| BV_3        | FWD REV STAT | Status of Forward/ Reverse, regardless of the control source. | REVRSE/FORWRD        | R         |         |
| BV_4        | FAULT STATUS | Status of Fault, regardless of the control source.            | FAULT/NOFLT          | R         |         |
| BV_5        | ALARM STATUS | Status of Alarm, regardless of the control source.            | ALARM/NORMAL         | R         |         |
| BV_6        | AT ZERO      | Motor is running at Zero speed.                               | TRUE/FALSE           | R         |         |
| BV_7        | AT SETPOINT  | Motor is running at Setpoint.                                 | TRUE/FALSE           | R         |         |
| BV_8        | RO1 STATUS   | Status of relay output 1.                                     | ON/OFF               | R         | P5.1.13 |
| BV_9        | RO2 STATUS   | Status of relay output 2.                                     | ON/OFF               | R         | P5.1.14 |
| BV_10       | RO3 STATUS   | Status of relay output 3.                                     | ON/OFF               | R         | P5.1.15 |
| BV_11       | M1 STATUS    | Status of M1 contactor (if e-bypass enabled).                 | CLOSED/OPEN          | R         |         |
| BV_12       | M2 STATUS    | Status of M2 contactor (if e-bypass enabled).                 | CLOSED/OPEN          | R         |         |
| BV_13       | FBDATAOUT1B0 | Fieldbus Process Data Out 1 Bit 0                             | ON/OFF               | R         |         |
| BV_14       | FBDATAOUT1B1 | Fieldbus Process Data Out 1 Bit 1                             | ON/OFF               | R         |         |
| BV_15       | FBDATAOUT1B2 | Fieldbus Process Data Out 1 Bit 2                             | ON/OFF               | R         |         |
| BV_16       | FBDATAOUT1B3 | Fieldbus Process Data Out 1 Bit 3                             | ON/OFF               | R         |         |
| BV_17       | FBDATAOUT1B4 | Fieldbus Process Data Out 1 Bit 4                             | ON/OFF               | R         |         |
| BV_18       | FBDATAOUT1B5 | Fieldbus Process Data Out 1 Bit 5                             | ON/OFF               | R         |         |
| BV_19       | FBDATAOUT1B6 | Fieldbus Process Data Out 1 Bit 6                             | ON/OFF               | R         |         |
| BV_20       | FBDATAOUT1B7 | Fieldbus Process Data Out 1 Bit 7                             | ON/OFF               | R         |         |

#### Chapter 4 - Parameters and Menu Structure

I/O and Hardware (M5)

| Instance ID | Object Name  | Description                      | Active/Inactive Text | PV Access | Menu      |
|-------------|--------------|----------------------------------|----------------------|-----------|-----------|
| BV_21       | FBCNTRLBIT10 | Fieldbus Control Word Bit 10     | ON/OFF               | С         |           |
| BV_22       | FBCNTRLBIT11 | Fieldbus Control Word Bit 11     | ON/OFF               | С         |           |
| BV_23       | FBCNTRLBIT12 | Fieldbus Control Word Bit 12     | ON/OFF               | С         |           |
| BV_24       | FBCNTRLBIT13 | Fieldbus Control Word Bit 13     | ON/OFF               | С         |           |
| BV_25       | FBCNTRLBIT14 | Fieldbus Control Word Bit 14     | ON/OFF               | С         |           |
| BV_26       | FBCNTRLBIT15 | Fieldbus Control Word Bit 15     | ON/OFF               | С         |           |
| BV_27       | COAST2STOP   | Command to issue a Coast to Stop | YES/READY            | w         |           |
| BV_28       | RAMP2STOP    | Command to issue a Ramp to Stop  | YES/READY            | w         |           |
| BV_29       | QUICK STOP   | Command to issue a Quick Stop    | YES/READY            | W         |           |
| BV_30       | FB CONTROL   | Activates Fieldbus Control.      | ON/OFF               | С         |           |
| BV_31       | FB REFERENCE | Activates Fieldbus Reference.    | ON/OFF               | С         |           |
| BV_32       | INTERLOCK 1  | Run Interlock 1                  | ON/OFF               | R         | P3.5.1.12 |
| BV_33       | INTERLOCK 2  | Run Interlock 2                  | ON/OFF               | R         | P3.5.1.13 |
| BV_34       | ENERGY OPT   | Energy Optimization              | ON/OFF               | R         | P3.1.2.18 |
| BV_35       | AUTO RESET   | Auto Reset                       | ON/OFF               | R         | P3.10.1   |
| BV_36       | FIREMODESTAT | Fire Mode Active                 | ACTIVE/INACTV        | R         |           |
| BV_37       | BYP ACTIVE   |                                  | ACTIVE/INACTV        | R         |           |
| BV_38       | BYP RUNNING  |                                  | YES/NO               | R         |           |
| BV_39       | REM SAFETY 1 |                                  | FAULT/NOFLT          | R         |           |
| BV_40       | REM SAFETY 2 |                                  | FAULT/NOFLT          | R         |           |
| BV_41       | REM SAFETY 3 |                                  | FAULT/NOFLT          | R         |           |
| BV_42       | REM SAFETY 4 |                                  | FAULT/NOFLT          | R         |           |
| BV_43       | REM SAFETY 5 |                                  | FAULT/NOFLT          | R         |           |
| BV_44       | REM SAFETY 6 |                                  | FAULT/NOFLT          | R         |           |
| BV_45       | REM SAFETY 7 |                                  | FAULT/NOFLT          | R         |           |
| BV_46       | REM SAFETY 8 |                                  | FAULT/NOFLT          | R         |           |

## BACnet MS/TP Protocol Quick Setup

For monitoring objects through the BACnet MS/TP protocol, complete the following steps:

- 1. Select: Main Menu > I/O and Hardware (M5) > RS-485 (M5.8) > Common Settings (M5.8.1) > Protocol (p5.8.1.1) > Edit.
- 2. Select **BACnet MSTP** from the list and press the button.
- 3. Select: Main Menu > I/O and Hardware (M5) > RS-485 (M5.8) > BACnet MSTP (M5.8.3) > Parameters (M5.8.3.1) > Baud Rate (P5.8.3.1.1) > Edit.
- 4. Enter the desired baud rate and press the OK button.



- 5. Select: Main Menu > I/O and Hardware (M5) > RS-485 (M5.8) > BACnet MSTP (M5.8.3) > Parameters (M5.8.3.1) > MAC Address (P5.8.3.1.2) > Edit.
- 6. Enter the desired network device address and press the
- 7. Select: Main Menu > I/O and Hardware (M5) > RS-485 (M5.8) > BACnet MSTP (M5.8.3) > Parameters (M5.8.3.1) > Instance Number (P5.8.3.1.3) > Edit.
- 8. Enter the desired instance number and press the button. (Used when a BACnet MS/TP to BACnet IP router is on the network.)
- 9. Select: Main Menu > I/O and Hardware (M5) > RS-485 (M5.8) > BACnet MSTP (M5.8.3) > Parameters (M5.8.3.1) > Comm. Timeout (P5.8.3.1.5) > Edit.
- 10. Enter the desired time for drive to monitor for a communications loss and press the button. A value of 0

disables this monitoring.

For commanding Start/Stop and Speed Reference using the BACnet MS/TP protocol, complete the following steps:

- 1. Complete all settings required for Monitoring as listed above.
- 2. Set Ctrl. Place Auto (P3.2.1) to a value of FieldbusCTRL.

For commanding Start/Stop through the BACnet MS/TP protocol and Speed Reference through an Analog Input, complete the following changes:

- 1. Complete all settings required for Monitoring as listed above.
- 2. Set Ctrl. Place Auto (P3.2.1) to a value of FieldbusCTRL.
- 3. Set FieldbusCtrl Ref (P3.3.9) to a value of Al1 or Al2 (depending upon which Al is in use).

For commanding Start/Stop through a Digital Input and Speed Reference through the BACnet MS/TP protocol, complete the following steps:

- 1. Complete all settings required for Monitoring as listed above.
- 2. Set Ctrl. Place Auto (P3.2.1) to a value of I/O Control.
- 3. Set I/O A Ctrl Ref (P3.3.3) to a value of Fieldbus.

## P1 FLN (M5.8.3)

The Siemens P1 FLN fieldbus communications protocol is used by Siemens and others to connect terminal unit controllers to supervisory controllers. It is open to any manufacturer and widely used in the HVAC controls industry.

The physical characteristics of the P1 FLN bus is an RS-485 three-wire, with a maximum of 96 devices over a 4,000 foot (1219 m) distance, running at 4800 bps. The RS-485 interface is a half-duplex system. The transfer cable is supported as a Shielded Twisted Pair, type Belden 98410 or similar. However, on variable speed drives, the third wire (shield) is not terminated to the drive itself.

Logically, the P1 FLN is a master-slave protocol, with the supervisory controller being the master. Device points are partitioned into common HVAC control types, such as analog input, analog output, digital input, and digital output. P1 FLN messaging supports the reading, writing and overriding of these points.

The P1 FLN fieldbus protocol supports the following point types:

- Logical Digital Input (LDI) a two-state input for reading status.
- Logical Digital Output (LDO) a two-state output for commanding.





- Logical Analog Input (LAI) a floating or multi-state input for status.
- Logical Analog Output (LAO) a floating or multi-state output for commanding.

Each point type supports Change of Value (COV) reporting based on the point's present value, priority, and status (failed or normal). The output points are typically commandable from the P1 master panel where the input points are for monitoring purposes only.

If **Protocol** (5.8.1.1) is set to a value of **P1**, then configuration and status parameters related to the P1 fieldbus protocol are made available.

## Parameters (M5.8.3.1)

The following configuration parameters are available for the P1 fieldbus protocol:

| Menu       | Parameter              | ID   | Unit | Min  | Max   | Default | Description                                                                                                                                                                                                                                                                                           |
|------------|------------------------|------|------|------|-------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P5.8.3.1.1 | Slave Address          | 2534 |      | 0    | 127   | 99      | Defines the unique slave address to<br>be used by the drive on the P1<br>network. Broadcast messages are<br>sent to device number 99 and all<br>devices on the network respond to this<br>address; therefore, address 99 is a<br>reserved address and cannot be used<br>on any device on the network. |
| P5.8.3.1.2 | Baud Rate              | 2535 | bps  | 4800 | 9600  | 4800    | Defines the communications speed on<br>the network which must match all<br>devices on the network. Possible<br>settings are:<br>1 = 4800<br>2 = 9600                                                                                                                                                  |
| P5.8.3.1.3 | Communications Timeout | 2536 | S    | 0    | 65535 | 30      | Defines the amount of time in which a packet is not received from the master before a communications timeout is faulted/alarmed. A setting of <b>0</b> means that no fault is generated.                                                                                                              |

Table 103: P1 FLN Parameters.

# Monitoring (M5.8.3.2)

The following monitoring values are available for the P1 fieldbus protocol:

Table 104: P1 FLN Monitoring.

| Menu       | Parameter                | ID   | Min          | Max     | Description                                                                                                                                                                                                                                                                                                             |
|------------|--------------------------|------|--------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| M5.8.3.2.1 | Fieldbus Protocol Status | 2537 | Initializing | Faulted | Displays the current protocol status as follows:<br>0 = Initializing – Protocol is starting up.<br>1 = Stopped – Protocol is timed out or not in use.<br>2 = Operational – Protocol is running normally.<br>3 = Faulted – Major fault in protocol, requires restarting. If<br>fault remains, contact Technical Support. |

# P1 FLN Point Map

The following is the P1 FLN point map for Application 2770 as used in the Siemens APOGEE Network:

| Point<br>Number | Point<br>Type | Subpoint Name | Factory<br>Default | Engr. Units | Slope | Intercept | On Text | Off Text  | Drive Menu    |
|-----------------|---------------|---------------|--------------------|-------------|-------|-----------|---------|-----------|---------------|
| 1               | LAO           | CTRL ADDRESS  | 99                 |             | 1     | 0         |         |           |               |
| 2               | LAO           | APPLICATION   | 2770               |             | 1     | 0         |         |           |               |
| 3               | LDI           | AT SETPOINT   | OFF                |             |       |           | ON      | OFF       |               |
| 4               | LAI           | CURRENT       | 0                  | А           | 0.1   | 0         |         |           | M2.2.4        |
| 5               | LAI           | DC BUS VOLT   | 0                  | V           | 0.1   | 0         |         |           | M2.2.10       |
| 6               | LDI           | DRIVE READY   | READY              |             |       |           | READY   | NOT READY | M2.2.17 Bit 1 |
| 7               | LAI           | DRIVE TEMP    | 0                  | °F          | 0.18  | -58       |         |           | M2.2.11       |
| 8               | LAI           | FREQ OUTPUT   | 0                  | HZ          | 0.1   | -320      |         |           | M2.2.1        |
| 9               | LAI           | MOTOR TEMP    | 0                  | %           | 0.1   | 0         |         |           | M2.2.12       |
| 10              | LAI           | PCT OUTPUT    | 0                  | %           | 0.01  | 0         |         |           | M2.8.12       |
| 11              | LAI           | POWER         | 0                  | %           | 0.1   | 0         |         |           | M2.2.7        |
| 12              | LAI           | SPEED         | 0                  | RPM         | 1     | 0         |         |           | M2.2.3        |
| 13              | LAI           | TORQUE        | 0                  | %           | 0.1   | 0         |         |           | M2.2.5        |
| 14              | LAI           | VOLTAGE       | 0                  | V           | 0.1   | 0         |         |           | M2.2.9        |
| 15              | LAI           | FIREMODESTAT  | 0                  |             | 1     | 0         |         |           | P3.16.7       |
| 16              | LAI           | DRIVE KWH     | 0                  | KWH         | 0.1   | 0         |         |           | P4.4.1        |
| 17              | LAI           | DRIVE MWH     | 0                  | MWH         | 0.1   | 0         |         |           | P4.4.1        |
| 18              | LAI           | RUN TIME      | 0                  | HRS         | 10    | 0         |         |           | P4.4.7        |
| 20              | LAO           | OVRD TIME     | 1                  | HRS         | 1     | 0         |         |           |               |
| 21              | LDO           | RUN ENABLE    | STOP               |             |       |           | ENABLE  | STOP      | P3.5.1.11     |
| 22              | LDO           | CMD FWD.REV   | FWD                |             |       |           | REV     | FWD       |               |
| 23              | LDI           | FWD.REV       | FWD                |             |       |           | REV     | FWD       |               |
| 24              | LDO           | CMD RUN.STOP  | STOP               |             |       |           | RUN     | STOP      |               |
| 25              | LDI           | RUN.STOP      | STOP               |             |       |           | RUN     | STOP      |               |
| 26              | LDO           | HAND AUTO     | AUTO               |             |       |           | HAND    | AUTO      | P3.2.2        |
| 27              | LAO           | INPUT REF A   | 0                  | PCT         | 0.01  | 0         |         |           |               |
| 28              | LAI           | ACT FREQ REF  | 0                  | HZ          | 0.1   | -320      |         |           | M2.2.2        |
| 29              | LDO           | DAY.NGT       | DAY                |             |       |           | NIGHT   | DAY       |               |
| 30              | LAI           | ANALOG IN 1   | 0.00               | PCT         | 0.01  | 0         |         |           | P5.1.8        |
| 31              | LAI           | ANALOG IN 2   | 0.00               | PCT         | 0.01  | 0         |         |           | P5.1.10       |
| 32              | LAI           | ANALOG OUT 1  | 0.00               | PCT         | 0.01  | 0         |         |           | P5.1.12       |
| 33              | LDI           | DIGITAL IN 1  | OFF                |             |       |           | ON      | OFF       | P5.1.1        |
| 34              | LDI           | DIGITAL IN 2  | OFF                |             |       |           | ON      | OFF       | P5.1.2        |
| 35              | LDI           | DIGITAL IN 3  | OFF                |             |       |           | ON      | OFF       | P5.1.3        |
| 36              | LDI           | DIGITAL IN 4  | OFF                |             |       |           | ON      | OFF       | P5.1.4        |
| 37              | LDI           | DIGITAL IN 5  | OFF                |             |       |           | ON      | OFF       | P5.1.5        |

Table 105: P1 FLN Point Map.

### Chapter 4 - Parameters and Menu Structure

I/O and Hardware (M5)

| Point<br>Number | Point<br>Type | Subpoint Name | Factory<br>Default | Engr. Units | Slope | Intercept | On Text | Off Text | Drive Menu |
|-----------------|---------------|---------------|--------------------|-------------|-------|-----------|---------|----------|------------|
| 38              | LDI           | DIGITAL IN 6  | OFF                |             |       |           | ON      | OFF      | P5.1.6     |
| 39              | LDO           | RELAY OUT 1   | OFF                |             |       |           | ON      | OFF      | P5.1.13    |
| 40              | LDO           | RELAY OUT 2   | OFF                |             |       |           | ON      | OFF      | P5.1.14    |
| 41              | LDO           | RELAY OUT 3   | OFF                |             |       |           | ON      | OFF      | P5.1.15    |
| 42              | LAO           | FBDATA IN 1   | 0                  |             | 1     | 0         |         | Р        |            |
| 43              | LAO           | FBDATA IN 2   | 0                  |             | 1     | 0         |         |          |            |
| 44              | LAO           | FBDATA IN 3   | 0                  |             | 1     | 0         |         |          |            |
| 45              | LAO           | FBDATA IN 4   | 0                  |             | 1     | 0         |         |          |            |
| 46              | LAO           | FBDATA IN 5   | 0                  |             | 1     | 0         |         |          |            |
| 47              | LAO           | FBDATA IN 6   | 0                  |             | 1     | 0         |         |          |            |
| 48              | LAO           | FBDATA IN 7   | 0                  |             | 1     | 0         |         |          |            |
| 49              | LAO           | FBDATA IN 8   | 0                  |             | 1     | 0         |         |          |            |
| 50              | LAI           | FBDATA OUT 1  | 0                  |             | 1     | 0         |         |          | P3.6.1     |
| 51              | LAI           | FBDATA OUT 2  | 0                  |             | 1     | 0         |         |          | P3.6.2     |
| 52              | LAI           | FBDATA OUT 3  | 0                  |             | 1     | 0         |         |          | P3.6.3     |
| 53              | LAI           | FBDATA OUT 4  | 0                  |             | 1     | 0         |         |          | P3.6.4     |
| 54              | LAI           | FBDATA OUT 5  | 0                  |             | 1     | 0         |         |          | P3.6.5     |
| 55              | LAI           | FBDATA OUT 6  | 0                  |             | 1     | 0         |         |          | P3.6.6     |
| 56              | LAI           | FBDATA OUT 7  | 0                  |             | 1     | 0         |         |          | P3.6.7     |
| 57              | LAI           | FBDATA OUT 8  | 0                  |             | 1     | 0         |         |          | P3.6.8     |
| 58              | LAO           | PID1 GAIN     | 1000.00            | PCT         | 0.1   | 0         |         |          | P3.12.1.1  |
| 59              | LAO           | PID1 I TIME   | 10                 | SEC         | 0.1   | 0         |         |          | P3.12.1.2  |
| 60              | LAO           | PID1 D TIME   | 0                  | SEC         | 0.1   | 0         |         |          | P3.12.1.3  |
| 61              | LAI           | PID1 STATUS   | 0                  |             | 1     | 0         |         |          | M2.4.5     |
| 62              | LAI           | PID1 STPT     | 0                  |             | 1     | 0         |         |          | M2.4.1     |
| 63              | LAI           | PID1 FDBK     | 0                  |             | 1     | 0         |         |          | M2.4.2     |
| 64              | LAI           | PID1 OUTPUT   | 0                  | PCT         | 0.1   | 0         |         |          | M2.4.4     |
| 65              | LAO           | PID 2 GAIN    | 1000.00            | PCT         | 0.1   | 0         |         |          | P3.13.1.3  |
| 66              | LAO           | PID2 I TIME   | 10.00              | SEC         | 0.1   | 0         |         |          | P3.13.1.4  |
| 67              | LAO           | PID2 D TIME   | 0                  | SEC         | 0.1   | 0         |         |          | P3.13.1.5  |
| 68              | LAI           | PID2 STATUS   | 0                  |             | 1     | 0         |         |          | M2.5.5     |
| 69              | LAI           | PID2 STPT     | 0                  |             | 1     | 0         |         |          | M2.5.1     |
| 70              | LAI           | PID2 FDBK     | 0                  |             | 1     | 0         |         |          | M2.5.2     |
| 71              | LAI           | PID2 OUTPUT   | 0                  | PCT         | 0.1   | 0         |         |          | M2.5.4     |
| 72              | LAO           | ANYPARM       | 0                  |             | 1     | 0         |         |          |            |
| 73              | LAO           | ANYVALUE      | 0                  |             | 1     | 0         |         |          |            |
| 74              | LAI           | ID VERSION    | 0                  |             | 1     | 0         |         |          | M4.8.6     |

Chapter 4 - Parameters and Menu Structure

I/O and Hardware (M5)

| Point<br>Number | Point<br>Type | Subpoint Name | Factory<br>Default | Engr. Units | Slope | Intercept | On Text | Off Text | Drive Menu |
|-----------------|---------------|---------------|--------------------|-------------|-------|-----------|---------|----------|------------|
| 75              | LAI           | AP VERSION    | 0                  |             | 1     | 0         |         |          | M4.8.7     |
| 76              | LAO           | ACCEL TIME    | 0                  | SEC         | 0.1   | 0.1       |         |          | P3.4.2     |
| 77              | LAO           | DECEL TIME    | 0                  | SEC         | 0.1   | 0.1       |         |          | P3.4.3     |
| 78              | LDI           | AUTORESET     | OFF                |             |       |           | ON      | OFF      | P3.10.1    |
| 79              | LAI           | CURRENT LMT   | 0                  | AMPS        | 0.1   | 0         |         |          | P3.1.1.7   |
| 80              | LDI           | ENERGY OPT    | OFF                |             |       |           | ON      | OFF      | P3.1.2.18  |
| 81              | LDI           | INTERLOC1     | OFF                |             |       |           | ON      | OFF      | P3.5.1.12  |
| 82              | LDI           | INTERLOC2     | OFF                |             |       |           | ON      | OFF      | P3.5.1.13  |
| 83              | LAI           | MAX FREQ REF  | 500                | HZ          | 0.1   | 0         |         |          | P3.3.2     |
| 84              | LAI           | MIN FREQ REF  | 0                  | HZ          | 0.1   | 0         |         |          | P3.3.1     |
| 85              | LAI           | MOTOR COSPHI  |                    |             | 0.01  | 0.3       |         |          | P3.1.1.5   |
| 86              | LAI           | MOTOR N CURR  |                    | AMPS        | 0.1   | 0         |         |          | P3.1.1.4   |
| 87              | LAI           | MOTOR N PWR   |                    | HP          | 0.134 | 0         |         |          | P3.1.1.6   |
| 88              | LAI           | MOTOR N SPD   |                    | RPM         | 1     | 24        |         |          | P3.1.1.3   |
| 89              | LAI           | MOTOR N VOLT  |                    | VOLTS       | 1     | 0         |         |          | P3.1.1.1   |
| 90              | LAI           | MOTOR N FREQ  |                    | HZ          | 0.01  | 8         |         |          | P3.1.1.2   |
| 91              | LDI           | FAULT ACTIVE  | NO                 |             |       |           | Yes     | No       |            |
| 92              | LAI           | FAULT ID      | 0                  |             | 1     | 0         |         |          | M2.2.18    |
| 93              | LDO           | RESET FAULT   |                    |             | 1     | 0         | RESET   | NORMAL   |            |
| 94              | LAI           | BYP ENABLE    |                    |             | 1     | 0         |         |          | P3.17.4    |
| 95              | LAI           | BYP SAFESTAT  | 0                  |             | 1     | 0         |         |          | M2.2.28    |
| 96              | LDI           | BYP ACTIVE    | OFF                |             |       |           | ON      | OFF      |            |
| 97              | LDI           | BYP RUNNING   | OFF                |             |       |           | ON      | OFF      |            |
| 98              | LAI           | BYP RUN TIME  | 0                  | HRS         | 1     | 0         |         |          | M2.2.29    |
| 99              | LAO           | ERROR STATUS  | 0                  |             | 1     | 0         |         |          |            |

## P1 Control Information

To monitor objects though P1 FLN, complete the following steps:

- 1. Set Protocol (P5.8.1.1) to a value of P1.
- 2. Set Slave Address (P5.8.3.1.1) to the desired P1 FLN node number.

i

#### NOTE:

Valid values are 0 through127. Exception is 99; this is a broadcast address and is reserved. Do not assign an address of 99 to any device on the P1 FLN.

3. Set Baud Rate (P5.8.3.1.2) to the desired P1 FLN baud rate.

To command the Start/Stop and Speed Reference through P1 FLN, complete the following steps:

- 1. Complete all settings required for Monitoring as listed above.
- 2. Set Control Place Auto (P1.15 or P3.2.1) to a value of FieldbusCTRL.

To command Start/Stop through the P1 protocol, and Speed Reference through an Analog Input, complete the following steps:

- **1.** Complete all settings required for Monitoring as listed above.
- 2. Set Ctrl. Place Auto (P3.2.1) to a value of FieldbusCTRL.
- 3. Set FieldbusCtrl Ref (P3.3.9) to a value of Al1 or Al2 (depending upon which Al is in use).

To command Start/Stop through a Digital Input, and Speed Reference through the P1 protocol, complete the following steps:

- 1. Complete all settings required for Monitoring as listed above.
- 2. Set Ctrl. Place Auto (P3.2.1) to a value of I/O Control.
- 3. Set I/O A Ctrl Ref (P3.3.3) to a value of Fieldbus.

## Modbus RTU (M5.8.3)

## Modbus RS-485 Parameters and Monitoring Values

| Structure  | Parameter     | Unit | Min  | Max    | Default | ID   | Description                                                                                                                                                                                                            |
|------------|---------------|------|------|--------|---------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameters |               |      |      |        |         |      |                                                                                                                                                                                                                        |
| P5.8.3.1.1 | Slave Address |      | 1    | 247    | 1       | 2320 | Defines the Modbus RTU unique device address.                                                                                                                                                                          |
| P5.8.3.1.2 | Baud Rate     | bps  | 300  | 230400 | 6       | 2378 | Defines the communication speed<br>of the Modbus RTU network.<br>1 = 300<br>2 = 600<br>3 = 1200<br>4 = 2400<br>5 = 4800<br>6 = 9600<br>7 = 19200<br>8 = 38400<br>9 = 57600<br>10 = 76800<br>11 = 115200<br>12 = 230400 |
| P5.8.3.1.3 | Parity Type   |      | None | Even   | None    | 2379 | Defines the parity type of the<br>Modbus RTU network:<br>0 = None<br>1 = Odd<br>2 = Even                                                                                                                               |
| P5.8.3.1.4 | Stopbits      |      | 1 Sb | 2 Sb   | 2 Sb    | 2380 | Defines the stop bits of the Modbus<br>RTU network:<br>1 = 1 Stop bit<br>2 = 1.5 Stop bits<br>3 = 2 Stop bits                                                                                                          |

Table 106: Parameters Related with Modbus Used through RTU.

#### Chapter 4 - Parameters and Menu Structure

I/O and Hardware (M5)

| Structure  | Parameter           | Unit | Min          | Max     | Default | ID   | Description                                                                                                                                                                                                                                                                                                           |
|------------|---------------------|------|--------------|---------|---------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P5.8.3.1.5 | Comm. Timeout       | S    | 0            | 65535   | 10      | 2321 | Defines the time the device has to<br>receive a token before indication of<br>an error.<br>0 = Not used                                                                                                                                                                                                               |
| P5.8.3.1.6 | Operate Mode        |      | Slave        | Master  | Slave   | 2374 | Defines the operation mode on the<br>Modbus RTU network:<br>0 = Slave                                                                                                                                                                                                                                                 |
|            |                     |      |              |         |         |      | 1 = Master                                                                                                                                                                                                                                                                                                            |
| Monitoring | 1                   |      |              |         |         |      |                                                                                                                                                                                                                                                                                                                       |
| M5.8.3.2.1 | FB Protocol Status  | 5    | Initializing | Faulted |         | 2381 | Displays the fieldbus protocol status<br>as follows:<br>0 = Initializing (Protocol is starting)<br>1 = Stopped (Protocol is stopped)<br>2 = Operational (Protocol is<br>communicating)<br>3 = Faulted (see <i>Last Fault</i><br>( <i>M5.8.3.2.4</i> ) for detail)<br>4 = Inactive (No communications<br>has occurred) |
| M5.8.3.2.2 | Comm Status         |      | 0            | 99.999  | 0.0     | 2382 | Displays the fieldbus protocol status<br>as follows:<br>0 = Initializing (Protocol is starting)<br>1 = Stopped (Protocol is stopped)<br>2 = Operational (Protocol is<br>communicating)<br>3 = Faulted (see <i>Last Fault</i><br>( <i>M5.8.3.2.4</i> ) for detail)<br>4 = Inactive (No communications<br>has occurred) |
| M5.8.3.2.3 | Illegal Functions   |      |              |         |         | 2383 | Format = xx.yyy where xx indicates<br>bad frames and yyy indicates good<br>messages                                                                                                                                                                                                                                   |
| M5.8.3.2.4 | Illegal data addrs  |      |              |         |         | 2384 | Displays the function code received<br>that refers to an unallowed action<br>for the server (slave).                                                                                                                                                                                                                  |
| M5.8.3.2.5 | Illegal data values |      |              |         |         | 2385 | Displays the data address received<br>that refers to an unallowed action<br>for the server (slave).                                                                                                                                                                                                                   |
| M5.8.3.2.6 | Slave device busy   |      |              |         |         | 2386 | Displays the value received that refers to an unallowed action for the server (slave).                                                                                                                                                                                                                                |
| M5.8.3.2.7 | Memory parity erro  | or   |              |         |         | 2387 | Displays if the server (slave) is<br>engaged in processing a long<br>duration program command. The<br>client (master) should retransmit the<br>message later when the server<br>(slave) is free.                                                                                                                      |

I/O and Hardware (M5)

| Structure   | Parameter              | Unit | Min | Max | Default | ID   | Description                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------|------------------------|------|-----|-----|---------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| M5.8.3.2.8  | Slave Dev. Failure     |      |     |     |         | 2388 | Displays if the server (slave) has<br>detected a parity error in the<br>memory when reading a record.                                                                                                                                                                                                                                                                                                               |
| M5.8.3.2.9  | Last Fault<br>Response |      |     |     |         | 2389 | Displays the last fault response as<br>fault code as follows:<br>0 = None (No fault detected since<br>last power-up)<br>1 = Connection Timeout (time<br>defined in <b>Comm. Timeout</b><br>(M5.8.3.1.5) has expired and token<br>has not be received)                                                                                                                                                               |
| M5.8.3.2.10 | Control Word           |      |     |     |         | 2390 | Displays the control word received<br>from the fieldbus. Based on 32 bits<br>as described below:<br>B0 = Start/Stop (0 = Stop; 1 = Start)<br>B1 = Direction (0 = Forward; 1 =<br>Reverse)<br>B2 = Fault Reset (0 = No action; 1 =<br>Reset faults)<br>B3 - B31 = Not used                                                                                                                                           |
| M5.8.3.2.11 | Status Word            |      |     |     |         | 2391 | Displays the status word sent to the<br>fieldbus. Based on 32 bits as<br>described below:<br>B0 = Ready (0 = Not Ready; 1 =<br>Ready)<br>B1 = Run (0 = Stopped; 1 =<br>Running)<br>B2 = Direction (0 = Forward; 1 =<br>Reverse)<br>B3 = Fault (0 = No faulted; 1 =<br>Faulted)<br>B4 = Alarm (0 = No alarm; 1 =<br>Alarm)<br>B5 = At Reference (0 = False; 1 =<br>True)<br>B6 = Zero Speed (0 = False; 1 =<br>True) |

## Modbus RTU Parameters

### Slave address (P5.8.3.1.1)

Each slave must have a unique address (from 1 through 247) so that it can be addressed independently from other nodes.

### Baud rate (P5.8.3.1.2)

Select the communication speed for the network. The default value is 9600 baud.

### Parity type (P5.8.3.1.3)

You can select the parity type for the network.

Table 107: Parity Type.

| Parity Type | Stopbits |
|-------------|----------|
| Even        | 1        |
| Odd         | 1        |
| None        | 2        |

### Communication Time-out (P5.8.3.1.5)

The Modbus board initiates a communication error for a time defined with this parameter. **0** means that no fault is generated.

## Modbus RTU Monitoring Values

### Fieldbus Protocol Status (P5.8.3.2.1)

Field Protocol Status indicates the status of the protocol.

Table 108: FB Protocol Statuses.

| INITIALIZING | Protocol is starting up.                                                                    |
|--------------|---------------------------------------------------------------------------------------------|
| STOPPED      | Protocol is timed out, or not used.                                                         |
| OPERATIONAL  | Protocol is running.                                                                        |
| FAULTED      | Major fault in protocol, requires restarting. If fault persists, contact Technical Support. |

### Communication Status (P5.8.3.2.2)

The Communication Status shows how many errors and how many good messages the variable frequency drive has received. The Communication status includes a common error counter that counts CRC and parity errors and a counter for good messages.

Only messages to the current slave in use are counted in the good messages.

This parameter displays as *xx.yyy* where *xx* indicates **bad frames** and *yyy* indicates **good messages**.

For example, 01.002 would represent one bad frame and two good messages.

### Illegal functions (P5.8.3.2.3)

The function code received in the query refers to an invalid action for the server (or slave).

### Illegal data addresses (P5.8.3.2.4)

The data address received in the query refers to an invalid address for the server (or slave).

### Illegal data values (P5.8.3.2.5)

A value contained in the query data field refers to an invalid value for server (or slave).

### Slave device busy (P5.8.3.2.6)

The server (or slave) is engaged in processing a long-duration program command. The client (or master) should retransmit the message later when the server (or slave) is free.

### Memory parity error (P5.8.3.2.7)

The server (or slave) attempted to read record file but detected a parity error in the memory.

### Slave device failure (P5.8.3.2.8)

An unrecoverable error occurred while the server (or slave) was attempting to perform the requested action.

### Last fault response (P5.8.3.2.9)

Displays the last fault response as Fault code.

### Control word (P5.8.3.2.10)

Displays the **Control Word** received from the bus.

### Word status (P5.8.3.2.11)

Displays the current Status Word that is sent to the bus.

### Communications

Features of the Modbus-Siemens interface:

- Direct control of the Siemens drive (for example, Run, Stop, Direction, Speed reference, Fault reset)
- Full access to all Siemens parameters
- Monitor the Siemens status (Output frequency, Output current, Fault code)

### Data addresses in Modbus messages

All data addresses in Modbus messages are referenced to zero. The first occurrence of a data item is addressed as item number zero. For example:

- The coil known as **Coil 1** in a programmable controller is addressed as **Coil 0000** in the data address field of a Modbus message.
- Coil 127 decimal is addressed as Coil 007E hex (126 decimal).
- Holding register 40001 is addressed as register 0000 in the data address field of the message. The function code field already specifies a 'holding register' operation. Therefore the **4XXXX** reference is implicit.
- Holding register 40108 is addressed as register 006B hex (107 decimal).

### Modbus Memory Map

The Siemens variables and fault codes as well as the parameters can be read and written from Modbus. The parameter addresses are determined in the application. Every parameter and actual value has been given an ID number in the application. The ID numbering of the parameter as well as the parameter ranges and steps can be found in the operator's manual in question. The parameter value shall be given without decimals. If several parameters/actual values are read with one message, the addresses of the parameters/actual values must be consecutive.

| Function<br>Code | Modbus Function Name   | TCP/RTU  | Access Type | Address Range (hex) |
|------------------|------------------------|----------|-------------|---------------------|
| 1 (0X01)         | Read coils             | TCP only | Discrete    | 00000 - 0FFFF       |
| 2 (0X02)         | Read Discrete Inputs   | TCP only | Discrete    | 10000 - 1FFFF       |
| 3 (0X03)         | Read Holding Registers | TCP&RTU  | 16bit       | 40000 - 4FFFF       |
| 4 (0X04)         | Read Input Registers   | TCP&RTU  | 16bit       | 30000 - 3FFFF       |
| 5 (0X05)         | Write Single Coils     | TCP only | Discrete    | 00000 - 0FFFF       |

Table 109: Supported Modbus Functions.

| Function<br>Code | Modbus Function Name          | TCP/RTU  | Access Type | Address Range (hex) |
|------------------|-------------------------------|----------|-------------|---------------------|
| 6 (0X06)         | Write Single Register         | TCP&RTU  | 16bit       | 40000 - 4FFFF       |
| 15 (0X0F)        | Write Multiple Coils          | TCP only | Discrete    | 00000 - 0FFFF       |
| 16 (0X10)        | Write Multiple Registers      | TCP&RTU  | 16bit       | 40000 - 4FFFF       |
| 23 (0X17)        | Read/Write Multiple Registers | TCP&RTU  | 16bit       | 40000 - 4FFFF       |

i

**NOTE:** Broadcasting is not supported in TCP. Broadcast is supported with function codes 06 and 16 in RTU.

## Modbus Data Mapping

### Coil registers

Coil registers contain binary data (Read/Write). For more information, see *Control word bits* in this chapter.

| Address | Function    | Purpose              |
|---------|-------------|----------------------|
| 0001    | RUN/STOP    | Control Word, bit 0. |
| 0002    | Direction   | Control Word, bit 1. |
| 0003    | Fault reset | Control Word, bit 2. |

Table 110: Defined Modbus Coil Registers.

### Discrete inputs

Input discrete registers contain binary data (Read). For more information, see Status word bits in this chapter.

| Address | Function     | Purpose             |
|---------|--------------|---------------------|
| 10001   | Ready        | Status Word, bit 0. |
| 10002   | Run          | Status Word, bit 1. |
| 10003   | Direction    | Status Word, bit 2. |
| 10004   | Fault        | Status Word, bit 3. |
| 10005   | Alarm        | Status Word, bit 4. |
| 10006   | At reference | Status Word, bit 5. |
| 10007   | Zero speed   | Status Word, bit 6. |
| 10008   | Flux ready   | Status Word, bit 7. |

Table 111: Defined Modbus Discrete Inputs.

### Holding registers and input registers

All values can be read with function codes 3 and 4 (all registers are 3X and 4X reference). The Modbus registers are mapped to the Siemens BT300 Drive as follows:

| Register number | Purpose                          | Access type | See the Table                                                               |
|-----------------|----------------------------------|-------------|-----------------------------------------------------------------------------|
| 0001 - 2000     | Siemens Application IDs          | 16-bit      | Parameter IDs [→ 142]                                                       |
| 2001 - 2050     | FBProcessDataIN                  | 16-bit      | Fieldbus Process Data IN [→ 142]                                            |
| 2051 - 2099     | FBProcessDataIN                  | 32-bit      | Fieldbus Process Data IN [→ 142]                                            |
| 2101 - 2150     | FBProcessDataOUT                 | 16-bit      | Fieldbus Process Data Out [→ 143]                                           |
| 2151 - 2199     | FBProcessDataOUT                 | 32-bit      | Fieldbus Process Data Out [→ 143]                                           |
| 2200 - 10000    | Siemens Application IDs          | 16-bit      | Parameter IDs [→ 142]                                                       |
| 10501 - 10530   | IDMap                            | 16-bit      | ID Map Initialization [→ 145]                                               |
| 10601 - 10630   | IDMap Read/Write                 | 16-bit      | Parameter Values in 16-bit IDMap<br>Read/Write Registers [→ 145]            |
| 10701 - 10760   | IDMap Read/Write                 | 32-bit      | Example of Parameter Values in 32-bit<br>IDMap Read/Write Registers [→ 146] |
| 20001 -40000    | Siemens Application IDs          | 32-bit      | Parameter IDs [→ 142]                                                       |
| 40001 - 40007   | Operation day counter            | 16-bit      | Operation Day Counter [→ 146]                                               |
| 40101 -40107    | Resettable operation day counter | 16bit       | Resettable Operation Day Counter $[\rightarrow 146]$                        |
| 40201 - 40203   | Energy counter                   | 16bit       | Energy Counter [→ 147]                                                      |
| 40301 -40303    | Resettable energy counter        | 16-bit      | Resettable Energy Counter [→ 147]                                           |
| 40401 - 40430   | Fault history                    | 16-bit      | Fault History [→ 147]                                                       |

Table 112: Defined Modbus Input and Holding Registers.

### Application IDs

Application IDs are parameters that depend on the frequency converter's application. These parameters can be read and written by pointing the corresponding memory range directly or by using the so-called ID map. It is easiest to use a straight address if you want to read a single parameter value or parameters with consecutive ID numbers. It is possible to read 12 consecutive ID addresses.

Table 113: Modbus Parameter IDs.

| Register number | Purpose                | Application ID        |
|-----------------|------------------------|-----------------------|
| 0001-2000       | Application parameters | 1 through 2000        |
| 2200-10000      | Application parameters | 2200 through<br>10000 |

#### FB Process data IN

The process data fields are used to control the drive (for example, Run, Stop, Reference, Fault Reset) and to quickly read actual values (for example, Output frequency, Output current, Fault code). The fields are structured as follows:

### Process Data Master → Slave (max 22 bytes)

Table 114: Fieldbus Process Data IN.

| Address |        |                                     |                 |              |
|---------|--------|-------------------------------------|-----------------|--------------|
| 16-bit* | 32-bit | Name                                |                 | Range/Type   |
| 2001    |        | 2051 = High data<br>2052 = Low data | FB Control Word | Binary coded |
| 2002    |        | -                                   | Reserved        | Binary coded |

| Address |        |                                     |                      |                                 |
|---------|--------|-------------------------------------|----------------------|---------------------------------|
| 16-bit* | 32-bit | Name                                |                      | Range/Type                      |
| 2003    |        | 2053 = High data<br>2054 = Low data | FB Speed Reference   | 0 through 100.00%<br>unit 0.01% |
| 2004    |        | 2055 = High data<br>2056 = Low data | FB Process Data In 1 | User-definable                  |
| 2005    |        | 2057 = High data<br>2058 = Low data | FB Process Data In 2 | User-definable                  |
| 2006    |        | 2059 = High data<br>2060 = Low data | FB Process Data In 3 | User-definable                  |
| 2007    |        | 2061 = High data<br>2062 = Low data | FB Process Data In 4 | User-definable                  |
| 2008    |        | 2063 = High data<br>2064 = Low data | FB Process Data In 5 | User-definable                  |
| 2009    |        | 2065 = High data<br>2066 = Low data | FB Process Data In 6 | User-definable                  |

\*In the Siemens BT300 Drive, the Control Word and the Status Word are formed of 32 bits. Only the initial 16 bits can be read in the 16-bit area.

### Control word bits

The Control word is composed of 32 bits. The bits are described in the following table. Unused bits must be set to zero.

Table 115: Control Word Bits.

| Bit    | Name        | Value 1       | Value 0      | Description                             |
|--------|-------------|---------------|--------------|-----------------------------------------|
| В0     | Start/Stop  | Start request | Stop request | Start/Stop command to application.      |
| B1     | Direction   | Reverse       | Forward      | Command to change rotational direction. |
| B2     | Fault reset | Reset faults  | No action    | Command to reset fault.                 |
| B3-B31 |             | Not used      |              |                                         |

FB Process data OUT

### Process Data Slave → Master (max 22 bytes)

Table 116: Fieldbus Process Data Out.

| Address |        |                                     |                       |                                 |
|---------|--------|-------------------------------------|-----------------------|---------------------------------|
| 16-bit  | 32-bit |                                     | Name                  | Range/Type                      |
| 2101    |        | 2151 = High data<br>2152 = Low data | FB Status Word        | Binary coded.                   |
| 2102    |        | -                                   | Reserved              | Binary coded.                   |
| 2103    |        | 2153 = High data<br>2154 = Low data | FB Actual Speed       | 0 through100.00,<br>unit 0.01%. |
| 2104    |        | 2155 = High data<br>2156 = Low data | FB Process Data Out 1 | User-definable.                 |
| 2105    |        | 2157 = High data<br>2158 = Low data | FB Process Data Out 2 | User-definable.                 |

I/O and Hardware (M5)

| Address |        |                                     |                       |                 |
|---------|--------|-------------------------------------|-----------------------|-----------------|
| 16-bit  | 32-bit |                                     | Name                  | Range/Type      |
| 2106    |        | 2159 = High data<br>2160 = Low data | FB Process Data Out 3 | User-definable. |
| 2107    |        | 2161 = High data<br>2162 = Low data | FB Process Data Out 4 | User-definable. |
| 2108    |        | 2163 = High data<br>2164 = Low data | FB Process Data Out 5 | User-definable. |
| 2109    |        | 2165 = High data<br>2166 = Low data | FB Process Data Out 6 | User-definable. |
| 2110    |        | 2167 = High data<br>2168 = Low data | FB Process Data Out 7 | User-definable. |
| 2111    |        | 2169 = High data<br>2170 = Low data | FB Process Data Out 8 | User-definable. |

### Status Word bits

The Status word is composed of 32 bits. The bits are described in the following table.

| Bit    | Name        | Value 1          | Value 0     | Description                                        |
|--------|-------------|------------------|-------------|----------------------------------------------------|
| B0     | Ready       | Ready            | Not ready   | Indicates whether the drive is ready or not.       |
| B1     | Run         | Running          | Stop        | Indicates whether the drive is running or stopped. |
| B2     | Direction   | Counterclockwise | Clockwise   | Indicates the rotation direction of the motor.     |
| B3     | Fault       | Faulted          | Not faulted | Indicates if a fault is active.                    |
| B4     | Alarm       | Alarm            | No alarm    | Indicates if an alarm is active.                   |
| B5     | AtReference | True             | False       | Reference frequency reached.                       |
| B6     | ZeroSpeed   | True             | False       | Motor running at zero speed.                       |
| B7     | FluxReady   | True             | False       | Motor is magnetized.                               |
| B8-B28 | Not used    |                  |             |                                                    |

Table 117: Status Word Bits B1-B28.

Table 118: Status Word Bits B29-B31, Descriptions of Bit Connections.

| B29 Control place | B30 Control place | B31 Control place | Description   |
|-------------------|-------------------|-------------------|---------------|
| 0                 | 0                 | 1                 | Fieldbus      |
| 0                 | 1                 | 0                 | Keypad        |
| 0                 | 1                 | 1                 | PC tool       |
| 1                 | 0                 | 0                 | I/O terminals |

The use of process data depends on the application. In a typical situation, the device is started and stopped with the ControlWord (CW) written by the Master and the Rotating speed is set with Reference (REF). With PD1 through PD8 the device can be given other reference values (for example, Torque reference).

With the StatusWord (SW) read by the Master, the status of the device can be seen. Actual Value (ACT) and PD1 through PD8 show the other actual values.
## ID Map

Using the ID map, you can read consecutive memory blocks that contain parameters whose IDs are not in a consecutive order. The address range 10501 through 10530 is called *IDMap*, and includes an address map in which you can write your parameter IDs in any order. The address range 10601 through 10630 is called *IDMap Read/Write*, and includes values for parameters written in the ID map. As soon as one ID number has been written in the map cell 10501, the corresponding parameter value can be read and written in the address 10601, and so on.





Once the IDMap address range has been initialized with any parameter ID number, the parameter value can be read and written in the IDMap Read/Write address range address IDMap address + 100.

| Address | Data                             |
|---------|----------------------------------|
| 410601  | Data included in parameter ID700 |
| 410602  | Data included in parameter ID702 |
| 410603  | Data included in parameter ID707 |
| 410604  | Data included in parameter ID704 |

Table 120: Parameter Values in 16-bit IDMap Read/Write Registers.

If the IDMap table has not been initialized, all fields show the index **0**. If it has been initialized, the parameter IDs included in it are stored in the flash memory of the OPT-CI board.

#### Example of 32-Bit IDMap

Table 121: Example of Parameter Values in 32-bit IDMap Read/Write Registers.

| Address | Data                       |
|---------|----------------------------|
| 410701  | Data High, parameter ID700 |
| 410702  | Data Low, parameter ID700  |
| 410703  | Data High, parameter ID702 |
| 410704  | Data Low, parameter ID702  |

### **Operation Day Counter**

Table 122: Operation Day Counter.

| Address | Register | Purpose |
|---------|----------|---------|
| 40001   | 440001   | Years   |
| 40002   | 440002   | Days    |
| 40003   | 440003   | Hours   |
| 40004   | 440004   | Minutes |
| 40005   | 440005   | Seconds |

## Resettable Operation Day Counter

Reset the counter by writing **1** for Parameter ID2311.

Table 123: Resettable Operation Day Counter.

| Address | Register | Purpose |
|---------|----------|---------|
| 40101   | 440101   | Years   |
| 40102   | 440102   | Days    |
| 40103   | 440103   | Hours   |
| 40104   | 440104   | Minutes |
| 40105   | 440105   | Seconds |

## Energy Counter

The last number of the **Format** field indicates the decimal point place in the **Energy** field. If the number is bigger than 0, move the decimal point to the left by the number indicated. For example, Energy = 1200, Format = 52. Unit = 1. Energy = 12.00 kWh.

Table 124: Energy Counter.

| Address | Register | Purpose                                          |
|---------|----------|--------------------------------------------------|
| 40201   | 440201   | Energy                                           |
| 40202   | 440202   | Format                                           |
| 40203   | 440203   | Unit<br>1 = kWh<br>2 = MWh<br>3 = GWh<br>4 = TWh |

### Resettable Energy Counter

Reset the counter by writing **1** for Parameter ID2312.

Table 125: Resettable Energy Counter.

| Address | Register | Purpose                                          |
|---------|----------|--------------------------------------------------|
| 40301   | 440301   | Energy                                           |
| 40302   | 440302   | Format                                           |
| 40303   | 440303   | Unit<br>1 = kWh<br>2 = MWh<br>3 = GWh<br>4 = TWh |

### Fault history

The fault history can be viewed by reading from address 40401 onward. The faults are listed in chronological order so that the latest fault is mentioned first and the oldest last. The fault history can contain 29 faults at the same time. The fault history contents are represented as follows.

Table 126: Fault History.

| Address | Register | Purpose |
|---------|----------|---------|
| 40401   | 440401   |         |
| 40402   | 440402   |         |
| 40403   | 440403   |         |
|         |          |         |
| 40429   | 440429   |         |

## Example messages

## Example 1

Write the process data 42001 through 42003 with command 16 (Preset Multiple Registers).

## Command Master - Slave:

| ADDRESS  |                     | 01 hex Slave address 1 hex (= 1)                                   |
|----------|---------------------|--------------------------------------------------------------------|
| FUNCTION |                     | 10 hex Function 10 hex (= 16)                                      |
| DATA     | Starting address HI | 07 hex Starting address 07D0 hex (= 2000)                          |
|          | Starting address LO | D0 hex                                                             |
|          | No. of registers HI | 00 hex                                                             |
|          | No. of registers LO | 03 hex Number of registers 0003 hex (= 3)                          |
|          | Byte count          | 06 hex Byte count 06 hex (= 6)                                     |
|          | Data HI             | 00 hex Data 1 = 0001 hex (= 1). Setting control word run bit to 1. |
|          | Data LO             | 01 hex                                                             |
|          | Data HI             | 00 hex Data 2 = 0000 hex (= 0).                                    |
|          | Data LO             | 00 hex                                                             |
|          | Data HI             | 13 hex Data 3 = 1388 hex (= 5000), Speed Reference to 50.00%       |
|          | Data LO             | 88 hex                                                             |
| ERROR    | CRC HI              | C8 hex CRC field C8CB hex (= 51403)                                |
| CHECK    | CRC LO              | CB hex                                                             |

#### Message frame:

| 01 | 10 | 07 | D0 | 00 | 03 | 06 | 00 | 01 | 00 | 00 | 13 | 88 | C8 | СВ |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|

The reply to Preset Multiple Registers message is the echo of the 6 first bytes.

## Answer Slave - Master:

| ADDRESS  |                     | 01 hex Slave address 1 hex (= 1)          |
|----------|---------------------|-------------------------------------------|
| FUNCTION |                     | 10 hex Function 10 hex (= 16)             |
| DATA     | Starting address HI | 07 hex Starting address 07D0 hex (= 2000) |
|          | Starting address LO | D0 hex                                    |
|          | No. of registers HI | 00 hex Number of registers 0003 hex (= 3) |
|          | No. of registers LO | 03 hex                                    |
| ERROR    | CRC HI              | 80 hex CRC 8085 hex (= 32901)             |
| CHECK    | CRC LO              | 85 hex                                    |

#### **Reply Frame:**

| 01 | 10 | 07 | D0 | 00 | 03 | 80 | 85 |
|----|----|----|----|----|----|----|----|
|    |    |    |    |    |    |    |    |

## Example 2

Read the Process Data 42103 through 42104 with command 4 (Read Input Registers).

## Command Master - Slave:

| ADDRESS  |                     | 01 hex Slave address 1 hex (= 1)          |
|----------|---------------------|-------------------------------------------|
| FUNCTION |                     | 04 hex Function 4 hex (= 4)               |
| DATA     | Starting address HI | 08 hex                                    |
|          | Starting address LO | 36 hex                                    |
|          | No. of registers HI | 00 hex Number of registers 0002 hex (= 2) |
|          | No. of registers LO | 02 hex                                    |
| ERROR    | CRC HI              | 93 hex CRC field 93A5 hex (= 37797)       |
| СНЕСК    | CRC LO              | A5 hex                                    |

Message frame:



The reply to the Read Input Registers message contains the values of the read registers.

## Answer Slave - Master:

| ADDRESS  |            | 01 hex Slave address 1 hex (= 1)                        |
|----------|------------|---------------------------------------------------------|
| FUNCTION |            | 04 hex Function 4 hex (= 4)                             |
| DATA     | Byte count | 04 hex Byte count 4 hex (= 4)                           |
|          | Data HI    | 13 hex Speed reference = 1388 hex (= 5000 = > 50.00%)   |
|          | Data LO    | 88 hex                                                  |
|          | Data HI    | 09 hex Output Frequency = 09C4 hex (= 2500 = >25.00 Hz) |
|          | Data LO    | C4 hex                                                  |
| ERROR    | CRC HI     | 78 hexCRC field 78E9 hex (= 30953)                      |
| CHECK    | CRC LO     | hex                                                     |

**Reply frame:** 

| 01 | 04 | 04 | 13 | 88 | 09 | C4 | 78 | E9 |
|----|----|----|----|----|----|----|----|----|
|----|----|----|----|----|----|----|----|----|

#### Example of an exception response

In an exception response, the Slave sets the *most-significant bit (MSB)* of the function code to **1**. The Slave returns an exception code in the data field.

## Command Master - Slave:

| ADDRESS  |                     | 01 hex Slave address 1 hex (= 1)          |
|----------|---------------------|-------------------------------------------|
| FUNCTION |                     | 04 hex Function 4 hex (= 4)               |
| DATA     | Starting address HI | 17 hex Starting address 1770 hex (= 6000) |
|          | Starting address LO | 70 hex                                    |

|       | No. of registers HI | 00 hex Invalid number of registers 0005 hex (= 5) |
|-------|---------------------|---------------------------------------------------|
|       | No. of registers LO | 05 hex                                            |
| ERROR | CRC HI              | 34 hex                                            |
| СНЕСК | CRC LO              | 66 hex CRC field 3466 hex (= 13414)               |

Message frame:

| 01 | 04 | 17 | 70 | 00 | 05 | 34 | 66 |
|----|----|----|----|----|----|----|----|

## **Exception Response:**

| Answer Slave - Master: |                                              |
|------------------------|----------------------------------------------|
| ADDRESS                | 01 hex Slave address 1 hex (= 1)             |
| FUNCTION               | 84 hex Most significant bit set to 1         |
| ERROR CODE             | 04 hex Error code 04 => Slave Device Failure |
| ERROR CRC HI           | 42 hex CRC field 42C3 hex (= 17091)          |
| CHECK CRC LO           | C3 hex                                       |
|                        |                                              |

**Reply frame:** 

## **Quick Setup**

For monitoring of objects using ModBus RTU complete the following steps:

- 1. Select:
  - Main Menu > I/O and Hardware (M5) > RS-485 (M5.8) > Common settings (M5.8.1) > Protocol >Edit.
- 2. Select ModBus RTU.
- 3. Select:

Main Menu > I/O and Hardware (M5) > RS-485 (M5.8) > ModBus RTU (M5.8.3) > Parameters (M5.8.3.1) > Slave Address (M5.8.3.1.1) > Edit.

- 4. Enter desired address.
- 5. Select:

Main Menu > I/O and Hardware (M5) > RS-485 (M5.8) > ModBus RTU (M5.8.3) > Parameters (M5.8.3.1) > Baud Rate (M5.8.3.1.2) > Edit.

- 6. Select desired baud rate.
- 7. Select:

Main Menu > I/O and Hardware (M5) > RS-485 (M5.8) > ModBus RTU (M5.8.3) > Parameters (M5.8.3.1) > Parity Type (M5.8.3.1.3) > Edit.

8. Select desired parity type.

- 9. Select:
  - Main Menu > I/O and Hardware (M5) > RS-485 (M5.8) > ModBus RTU (M5.8.3) > Parameters (M5.8.3.1) > Stopbits (M5.8.3.1.4) > Edit.
- 10. Select desired stop bits.

For commanding of Run/Stop using ModBus RTU complete the following steps (in addition to the Monitoring steps above):

- 1. Select: Main Menu > Quick Setup (M1) > Ctrl. Place Auto (M1.15) > Edit.
- 2. Select FieldBusCTRL.

For commanding of Speed Reference using ModBus RTU complete the following steps (in addition to the monitoring steps above):

- 1. Select:
  - Main Menu > Quick Setup (M1) > I/O A Ctrl Ref (M1.10) > Edit.
- 2. Select Fieldbus.

# Ethernet (M.5.9)

Ethernet settings are used to define and configure the fieldbus protocol. The wiring is the same for all Ethernet protocol, as shown below.



Figure 36: Etherenet Connection.

# Common Settings (M5.9.1)

Table 127: Ethernet Common Settings (M5.9.1).

| Structure | Parameter       | Min | Max              | Unit     | Default          | ID   | Description                                                                           |
|-----------|-----------------|-----|------------------|----------|------------------|------|---------------------------------------------------------------------------------------|
| P5.9.1.1  | IP Address Mode |     | DHCP with AutoIP | Fixed IP | DHCP with AutoIP | 2482 | Defines the IP addressing<br>mode as follows:<br>0 = Fixed IP<br>1 = DHCP with AutoIP |
| P5.9.1.2  | Fixed IP        |     |                  |          |                  |      | See below.                                                                            |
| P5.9.1.3  | IP Address      |     |                  |          |                  | 2483 | Displays the actual IP<br>Address in use.                                             |
| P5.9.1.4  | Subnet Mask     |     |                  |          |                  | 2484 | Displays the actual subnet mask in use.                                               |
| P5.9.1.5  | Default Gateway |     |                  |          |                  | 2485 | Displays the actual default gateway in use.                                           |
| P5.9.1.6  | MAC Address     |     |                  |          |                  | 2486 | Displays the Ethernet card's MAC address.                                             |

#### Table 128: Fixed IP (M5.9.1.2)

| Structure  | Parameter       | Min | Мах | Unit | Default      | ID   | Description                                                                                             |
|------------|-----------------|-----|-----|------|--------------|------|---------------------------------------------------------------------------------------------------------|
| P5.9.1.2.1 | IP Address      |     |     |      | 192.168.0.10 | 2529 | Defines the maximum<br>number of clients (master)<br>can access the server<br>(slave) simultaneously.   |
| P5.9.1.2.2 | Subnet Mask     |     |     |      | 255.255.0.0  | 2530 | Defines the Modbus TCP unique device address.                                                           |
| P5.9.1.2.3 | Default Gateway |     |     |      | 192.168.0.1  | 2531 | Defines the time the device<br>has to receive a token<br>before indication of an error.<br>0 = Not used |

## **Ethernet Common Settings**

## IP Address Mode (P5.9.1.1)

Selectable alternatives are DHCP (Dynamic Host Configuration Protocol) and Fixed.

DHCP protocol gives IP addresses to new devices connecting to local network. This address is valid for a certain period of time. If no DHCP server is found, an automatic random IP is given.

A fixed IP address is specified manually and does not change.

When the mode is changed from DHCP to Fixed, the addresses will read:

IP: 192.168.0.10

Subnet mask: 255.255.0.0

Default gateway: 192.168.0.1

## IP address (P5.9.1.3)

An IP address is a series of numbers (as above) specific to the device connected to the Internet.

## Subnet Mask (P5.9.1.4)

The network mask marks all the bits of an IP address for the identification of the network and the subnetwork.

### Default Gateway (P5.9.1.5)

The gateway address is the IP address of a network point that acts as an entrance to another network.

## MAC address (P5.9.1.6)

The MAC address of the control board. A MAC address (Media Access Control) is a unique address given to each network host. It is not editable.

## Modbus TCP (M5.9.2)

For further information on the Modbus register list, see *Modbus RTU (M5.8.3)*.

# Modbus TCP Parameters and Monitoring Values

## Modbus TCP Settings

Table 129: Parameters Related to Modbus TCP.

| Code          | Parameter                | Min        | Max    | Unit | Default | ID   | Description                                                                                          |
|---------------|--------------------------|------------|--------|------|---------|------|------------------------------------------------------------------------------------------------------|
| PARAMETERS    | (Common Settings)        |            |        |      |         | •    |                                                                                                      |
| P5.9.2.1.1    | Connection limit         | 0          | 3      |      | 2       | 2446 | Number of allowed connections                                                                        |
| P5.9.2.1.2    | Unit identifier number   | 0          | 255    |      | 1       | 2447 | See the <i>Modbus TCP Settings</i> section.                                                          |
| P5.9.2.1.3    | Communication time-out   | 0          | 65535  | s    | 0       | 2448 | 0 = Not used                                                                                         |
| MONITORING    | VALUES (Connection 1, Mo | nitoring * |        |      |         | •    |                                                                                                      |
| M5.9.2.2.1.1  | Fieldbus protocol status | 1          | 3      |      |         | 2449 | 1 = Stopped<br>2 = Operational<br>3 = Faulted                                                        |
| M5.9.2.2.1.2  | Communication status     | 0.0        | 99.999 |      | 0.0     | 2450 | 0-99 Number of messages with<br>errors.<br>0-999 Number of messages<br>without communication errors. |
| M5.9.2.2.1.3  | Illegal functions        | 0          |        |      |         | 2451 | See Illegal functions<br>(P5.9.2.2.1.3).                                                             |
| M5.9.2.2.1.4  | Illegal data addresses   | 0          |        |      |         | 2452 | See Illegal data addresses<br>(P5.9.2.2.1.4).                                                        |
| M5.9.2.2.1.5  | Illegal data values      | 0          |        |      |         | 2453 | See Illegal data values (P5.9.2.2.1.5).                                                              |
| M5.9.2.2.1.6  | Slave device busy        | 0          |        |      |         | 2454 | See <i>Slave device busy</i> ( <i>P5.9.2.2.1.6</i> ).                                                |
| M5.9.2.2.1.7  | Memory parity error      | 0          |        |      |         | 2455 | See Memory parity error<br>(P5.9.2.2.1.7).                                                           |
| M5.9.2.2.1.8  | Slave device failure     | 0          |        |      |         | 2456 | See <i>Slave device failure</i> ( <i>P5.9.2.2.1.8</i> ).                                             |
| M5.9.2.2.1.9  | Last fault response      | 0          |        |      |         | 2457 | See Last fault response<br>(P5.9.2.2.1.9).                                                           |
| M5.9.2.2.1.10 | Control word             |            |        | hex  |         | 2458 | See Control Word Bits.                                                                               |
| M5.9.2.2.1.11 | Status word              |            |        | hex  |         | 2459 | See Status Word Bits.                                                                                |
| MONITORING    | VALUES (Connection 2, Mo | nitoring)* |        |      |         |      |                                                                                                      |
| P5.9.2.2.1.1  | Fieldbus protocol status | 1          | 3      |      |         | 2460 | 1 = Stopped<br>2 = Operational<br>3 = Faulted                                                        |
| P5.9.2.2.1.2  | Communication status     | 0.0        | 99.999 |      | 0.0     | 2461 | 0-99 Number of messages with<br>errors.<br>0-999 Number of messages<br>without communication errors. |
| P5.9.2.2.1.3  | Illegal functions        | 0          |        |      |         | 2462 | See Illegal functions<br>(P5.9.2.2.1.3).                                                             |
| P5.9.2.2.1.4  | Illegal data addresses   | 0          |        |      |         | 2463 | See Illegal data addresses<br>(P5.9.2.2.1.4).                                                        |

#### Chapter 4 - Parameters and Menu Structure

I/O and Hardware (M5)

| Code          | Parameter                | Min        | Max    | Unit | Default | ID   | Description                                                                                          |
|---------------|--------------------------|------------|--------|------|---------|------|------------------------------------------------------------------------------------------------------|
| P5.9.2.2.1.5  | Illegal data values      | 0          |        |      |         | 2464 | See Illegal data values (P5.9.2.2.1.5).                                                              |
| P5.9.2.2.1.6  | Slave device busy        | 0          |        |      |         | 2465 | See <i>Slave device busy</i> ( <i>P5.9.2.2.1.6</i> ).                                                |
| P5.9.2.2.1.7  | Memory parity error      | 0          |        |      |         | 2466 | See Memory parity error (P5.9.2.2.1.7).                                                              |
| P5.9.2.2.1.8  | Slave device failure     | 0          |        |      |         | 2467 | See <i>Slave device failure</i> ( <i>P5.9.2.2.1.8</i> ).                                             |
| P5.9.2.2.1.9  | Last fault response      | 0          |        |      |         | 2468 | See Last fault response<br>(P5.9.2.2.1.9).                                                           |
| P5.9.2.2.1.10 | Control word             |            |        | hex  |         | 2469 | See Control Word Bits.                                                                               |
| P5.9.2.2.1.11 | Status word              |            |        | hex  |         | 2470 | See Status Word Bits.                                                                                |
| MONITORING    | VALUES (Connection 3, Mo | nitoring)* | •      |      |         |      |                                                                                                      |
| M5.9.2.2.1.1  | Fieldbus protocol status | 1          | 3      |      |         | 2471 | 1 = Stopped<br>2 = Operational<br>3 = Faulted                                                        |
| M5.9.2.2.1.2  | Communication status     | 0.0        | 99.999 |      | 0.0     | 2472 | 0-99 Number of messages with<br>errors.<br>0-999 Number of messages<br>without communication errors. |
| M5.9.2.2.1.3  | Illegal functions        | 0          |        |      |         | 2473 | See Illegal functions<br>(P5.9.2.2.1.3).                                                             |
| M5.9.2.2.1.4  | Illegal data addresses   | 0          |        |      |         | 2474 | See Illegal data addresses<br>(P5.9.2.2.1.4).                                                        |

\*Only displays after a connection has been established.

## Modbus TCP Settings

## Common Settings

Connection limit (P5.9.2.1.1)

Defines how many clients can access the server simultaneously.

#### Unit identifier number (P5.9.2.1.2)

The Modbus slave address field usually used on Modbus Serial Line is replaced by a single byte Unit Identifier.

On TCP/IP, the Modbus server is addressed using its IP address; therefore, the Modbus Unit Identifier is not used.

## Communication time out number (P5.9.2.1.3)

Modbus initiates a communication error if the Ethernet connection is lost. Communication time-out parameters define the minimum delay between packages received from the client. The timer is reset and started after each received package. This parameter can be used if the client is periodically polling the slaves.

## Modbus TCP Monitoring Values

These values only display after a connection has been established.

#### Connection 1

### Fieldbus protocol status (P5.9.2.2.1.1)

The Fieldbus Protocol Status provides the status of the protocol.

Table 130: FB Protocol Status.

| INITIALIZING | Protocol is starting up.                                                                                                        |
|--------------|---------------------------------------------------------------------------------------------------------------------------------|
| STOPPED      | Protocol is timed out or not used.                                                                                              |
| OPERATIONAL  | Protocol is running.                                                                                                            |
| FAULTED      | Major fault in protocol, requires restarting. If fault remains contact your local Siemens Industry office or Technical Support. |

## Communication status (P5.9.2.2.1.2)

The **Communication status** shows how many error messages and how many good messages the frequency converter has received. The Communication status includes a common error counter that counts errors and a counter for good messages.

This parameter displays as *xx.yyy* where *xx* indicates **bad frames** and *yyy* indicates **good messages**.

For example, 01.002 would represent one bad frame and two good messages.

## Illegal functions (P5.9.2.2.1.3)

This value counts error situations. The function code received in the query refers to an invalid action for the server (or slave). This corresponds to Modbus fault code **01h**.

## Illegal data addresses (P5.9.2.2.1.4)

This value counts error situations. The data address received in the query refers to an invalid address for the server (or slave). This corresponds to Modbus fault code **02h**.

## Illegal data values (P5.9.2.2.1.5)

This value counts error situations. A value contained in the query data field refers to an invalid value for server (or slave). This corresponds to Modbus fault code **03h**.

### Slave device busy (P5.9.2.2.1.6)

This value counts error situations. The server (or slave) is engaged in processing a long–duration program command. The client (or master) should retransmit the message later when the server (or slave) is free. This corresponds to Modbus fault code **06h**.

## Memory parity error (P5.9.2.2.1.7)

This value counts error situations. The server (or slave) attempted to read record file but detected a parity error in the memory. This corresponds to Modbus fault code **08h**.

## Slave device failure (P5.9.2.2.1.8)

This value counts error situations. An unrecoverable error occurred while the server (or slave) was attempting to perform the requested action. This corresponds to Modbus fault code 04h.

## Last fault response (P5.9.2.2.1.9)

Displays the last fault response as **Fault code**.

### Control word (P5.9.2.2.1.10)

Displays the Control Word received from the bus.

## Status word (P5.9.2.2.1.11)

Displays the current Status Word that is sent to the bus.

## **Connection 2**

The monitoring values display the same pieces of information as for Connection 1 [ $\rightarrow$  155], for the 2nd and 3rd connections.

## **Connection 3**

The monitoring values display the same pieces of information as for Connection 1 [ $\rightarrow$  155], for the 2nd and 3rd connections.

## Quick Setup

For monitoring objects using ModBus TCP, complete the following steps:

| ! | NOTICE                                                                                      |
|---|---------------------------------------------------------------------------------------------|
|   | The DHCP settings must be set properly. Otherwise, a Fixed IP address may have to be setup. |

## If using DHCP, complete the following steps:

- Select: Main Menu > I/O and Hardware (M5) > Ethernet (M5.9) > Common settings (M5.9.1) >IP Address Mode (M5.9.1.1).
- 2. Verify this is set to DHCP with AutoIP.
- Select: Main Menu > I/O and Hardware (M5) > Ethernet (M5.9) > Common settings (M5.9.1) >IP Address (M5.9.1.2).
- 4. Verify that a valid IP Address has been assigned.

## If using a Fixed IP address, complete the following:

1. Select:

Main Menu > I/O and Hardware (M5) > Ethernet (M5.9) > Common settings (M5.9.1) > IP Address Mode (M5.9.1.1) > Edit.

- 2. Select Fixed IP.
- 3. Select:

Main Menu > I/O and Hardware (M5) > Ethernet (M5.9) > Common settings (M5.9.1) > IP Address (M5.9.1.2) > Edit.

- 4. Enter desired IP address.
- 5. Select:

Main Menu > I/O and Hardware (M5) > Ethernet (M5.9) > Common settings (M5.9.1) > Subnet Mask (M5.9.1.3) > Edit.

- 6. Enter the desired subnet mask.
- 7. Select:

Main Menu > I/O and Hardware (M5) > Ethernet (M5.9) > Common settings (M5.9.1) >Default Gateway (M5.9.1.4) > Edit.

8. Enter the desired default gateway.

For either DHCP or Fixed, the following steps must be completed:

1. Select:

Main Menu > I/O and Hardware (M5) > Ethernet (M5.9) > ModBusTCP (M5.9.2) > Common Settings (M5.9.2.1) > Connection Limit (M5.9.2.1.1) > Edit.

- 2. Select the desired connection limit.
- 3. Select:

Main Menu > I/O and Hardware (M5) > Ethernet (M5.9) > ModbusTCP (M5.9.2) > Common Settings (M5.9.2.1) > Slave Address (M5.9.2.1.2) > Edit.

4. Enter the desired address.

For commanding Run/Stop using BACnet/IP complete the following steps (in addition to the Monitoring steps above):

- 1. Select: Main Menu > Quick Setup (M1) > Ctrl. Place Auto (M1.15) > Edit.
- 2. Select FieldBusCTRL

For commanding of Speed Reference using BACnet/IP complete the following steps (in addition to the monitoring steps above):

- 1. Select: Main Menu > Quick Setup (M1) > I/O A Ctrl Ref (M1.10) > Edit.
- 2. Select Fieldbus.

## BACnet IP (M5.9.3)

## **BACnet IP Parameters and Monitoring Values**

### Ethernet Common Settings (M5.9.1)

Table 131: Common Settings for BACnet/IP.

| Code     | Parameter       | Min | Max | Unit | Default | ID | Description                   |
|----------|-----------------|-----|-----|------|---------|----|-------------------------------|
| P5.9.1.1 | IP address mode |     |     |      |         |    | See Ethernet common settings. |
| P5.9.1.3 | IP address      |     |     |      |         |    | See Ethernet common settings. |
| P5.9.1.4 | Subnet mask     |     |     |      |         |    | See Ethernet common settings. |
| P5.9.1.5 | Default gateway |     |     |      |         |    | See Ethernet common settings. |
| P5.9.1.6 | MAC address     |     |     |      |         |    | See Ethernet common settings. |

## **BACnet IP Settings**

Table 132: Parameters Related with BACnet Used Through Ethernet.

| Code       | Parameter              | Min     | Max                 | Unit | Default     | ID   | Description                                              |
|------------|------------------------|---------|---------------------|------|-------------|------|----------------------------------------------------------|
| P5.9.3.1.1 | Instance number        | 0       | 4194304             |      | 0           | 2406 | Device object's instance number<br>0 = Serial number     |
| P5.9.3.1.2 | Communication time-out | 0       | 65535               | m    | 0           | 2407 | 0 = Not used<br><b>NOTE:</b> This setting is in minutes. |
| P5.9.3.1.3 | Protocol in use        | 0       | 1                   |      | 0           | 2408 | 0 = Not used<br>1 = Used                                 |
| P5.9.3.1.4 | BBMD OP                | 0.0.0.1 | 255.255.2<br>55.255 |      | 192.168.0.1 | 2409 | Network BBMD IP address.                                 |
| P5.9.3.1.5 | BBMD Port              | 1       | 65535               |      | 47808       | 2410 | BBMD UDP Port number.                                    |
| P5.9.3.1.6 | Time to live           | 0       | 255                 |      | 0           | 2411 |                                                          |

Table 133: Monitoring Values.

| Code       | Parameter                | Min | Max    | Unit | Default          | ID | Description                                                                                          |
|------------|--------------------------|-----|--------|------|------------------|----|------------------------------------------------------------------------------------------------------|
| M5.9.3.2.1 | Fieldbus protocol status | 1   | 3      |      |                  |    | 1 = Stopped<br>2 = Operational<br>3 = Faulted                                                        |
| M5.9.3.2.2 | Communication status     | 0.0 | 99.999 |      | 0.0              |    | 0-99 Number of messages with<br>errors.<br>0-999 Number of messages<br>without communication errors. |
| M5.9.3.2.3 | Actual instance number   | 0   | 65535  |      | Serial<br>number |    | Shows actual Device Object's instance number.                                                        |
| M5.9.3.2.4 | Control word             |     |        | hex  |                  |    | See IP monitoring values.                                                                            |
| M5.9.3.2.5 | Status word              |     |        | hex  |                  |    | See IP monitoring values.                                                                            |

# **BACnet IP Parameter Descriptions**

## Ethernet Common Settings

## IP address mode (P5.9.1.1)

- Selectable alternatives are **DHCP** (Dynamic Host Configuration Protocol) and **Fixed**.
  - DHCP protocol gives IP addresses to new devices connecting to the local network. This address is valid for a certain period of time.
  - A Fixed IP address is specified manually and it does not change.
- When the mode is changed from **DHCP** to **Fixed**, the addresses will read:

IP: 192.168.0.10 Subnet mask: 0.0.0.0 Default gateway: 0.0.0.0

## IP address (P5.9.1.3)

An *IP address* is a series of numbers, such as **192.168.0.10**, which is specific to the device connected to the Internet.

## Subnet mask (P5.9.1.4)

The network mask marks all the bits of an IP address for the identification of the network and the subnetwork.

## Default gateway (P5.9.1.5)

Gateway address is the IP address of a network point that acts as an entrance to another network.

## MAC address (P5.9.1.6)

- MAC address (Media Access Control) is a unique address given to each network host.
- The MAC address of the control board.

## **BACnet IP Settings**

## Instance number (P 5.9.3.1.1)

Similar to BACnet MS/TP device object instance number (see Instance Number (P5.9.3.1.4).

## Communication time-out (P5.9.3.1.2)

BACnet board initiates a communication error if the Ethernet connection is lost. Communication time-out parameters define the minimum delay between UDP packages received from the master.

The timer is reset and started after each received UDP package. This parameter can be used if the master is periodically polling the slaves.

## Protocol in use (P5.9.3.1.3)

Use this parameter to enable and disable the BACnet/IP protocol.

- When the parameter value is set to **1**, the BACnet/IP protocol is enabled.
- When the parameter value is set to **0**, the BACnet/IP protocol is disabled.

## **IP Monitoring Values**

## Fieldbus protocol status (P5.9.3.2.1)

Fieldbus protocol status tells the status of the protocol.

### Communication status (P5.9.3.2.2)

The Communication status displays how many error messages and how many good messages the variable frequency drive has received. The Communication status includes a common error counter that counts CRC and parity errors and a counter for good messages.

This parameter displays as *xx.yyy* where *xx* indicates **bad frames** and *yyy* indicates **good messages**.

For example, 01.002 would represent one bad frame and two good messages.

## Actual instance number (P5.9.3.2.3)

The Device Object's actual instance number. This monitoring value is needed when value **0** is written to Parameter P5.9.3.1.1.

### Control word (P5.9.3.2.3)

Displays the **Control word** received from the bus.

### Status word (P5.9.3.2.4)

Displays the current **Status word** that is sent to the bus.

## Quick Setup

For monitoring objects using BACnet IP, complete the following steps:



If using DHCP, complete the following steps:

- 1. Select: Main Menu > I/O and Hardware (M5) > Ethernet (M5.9) > Common settings (M5.9.1) >IP Address Mode (M5.9.1.1).
- 2. Verify this is set to DHCP with AutoIP.
- 3. Select: Main Menu > I/O and Hardware (M5) > Ethernet (M5.9) > Common settings (M5.9.1) >IP Address (M5.9.1.2).
- 4. Verify that a valid IP Address has been assigned.

If using a Fixed IP address, complete the following steps:

- Select: Main Menu > I/O and Hardware (M5) > Ethernet (M5.9) > Common settings (M5.9.1) > IP Address Mode (M5.9.1.1) > Edit.
- 2. Select Fixed IP.
- 3. Select:

Main Menu > I/O and Hardware (M5) > Ethernet (M5.9) > Common settings (M5.9.1) >IP Address (M5.9.1.2) > Edit.

- 4. Enter the desired IP address.
- Select: Main Menu > I/O and Hardware (M5) > Ethernet (M5.9) > Common settings (M5.9.1) >Subnet Mask (M5.9.1.3) > Edit.
- 6. Enter the desired subnet mask.
- Select: Main Menu > I/O and Hardware (M5) > Ethernet (M5.9) > Common settings (M5.9.1) > Default Gateway (M5.9.1.4) > Edit.
- 8. Enter the desired default gateway.

For either DHCP or Fixed, the following steps must be completed:

- Select: Main Menu > I/O and Hardware (M5) > Ethernet (M5.9) > BACnet IP (M5.9.3) > Settings (M5.9.3.1) > Instance Number (M5.9.3.1.1) > Edit.
- 2. Select desired device instance number.
- 3. Select:

```
Main Menu > I/O and Hardware (M5) > Ethernet (M5.9) > BACnet IP (M5.9.3) > Settings (M5.9.3.1) > Protocol in use (M5.9.3.1.3) > Edit.
```

- 4. Set to a value of 1.
- 5. Select:

Main Menu > I/O and Hardware (M5) > RS-485 (M5.9) > BACnetMSTP (M5.9.3) > Parameters (M5.9.3.1) > Instance Number (M5.9.3.1.4) > Edit.

6. Enter the desired device instance number between 0 and 4194303.

For commanding of Run/Stop using BACnet/IP complete the following steps (in addition to the Monitoring steps above):

- 1. Select: Main Menu > Quick Setup (M1) > Ctrl. Place Auto (M1.15) > Edit.
- 2. Select FieldBusCTRL

For commanding Speed Reference using BACnet/IP complete the following steps (in addition to the monitoring steps above):

- Select: Main Menu > Quick Setup (M1) > I/O A Ctrl Ref (M1.10) > Edit.
- 2. Select Fieldbus.

# User Settings (M6)

User settings (M6) are drive- and keypad-specific settings. This section contains the following information:

Table 134: User Settings.

| Menu and Parameter Group  | Description                                           |
|---------------------------|-------------------------------------------------------|
| Language Selection (P6.1) | Selection of the language the keypad is displayed in. |
| Parameter Backup (M6.5)   | Backup and restore functions for the drive.           |
| Parameter Compare (M6.6)  | Parameter comparison to defaults, or backup files.    |
| Drive Name (P6.7)         | User-defined name for the drive.                      |

User settings (M6) contain the following parameters:

| Structure | Parameter           | ID   | Description                                                                                              |
|-----------|---------------------|------|----------------------------------------------------------------------------------------------------------|
| P.1       | Language Selections | 802  | Selection of the language for the keypad use. This varies depending upon the language package installed. |
| P6.5      | Parameter Backup    |      | See Parameter Backup (M6.5).                                                                             |
| P6.6      | Parameter Compare   |      | See Parameter Backup (M6.5).                                                                             |
| P6.7      | Drive Name          | 2528 | User-defined name for the drive. Default value is the serial number of the drive.                        |

# Parameter Backup (M6.5)

The parameterization can be used to restore the drive to factory default values, stored in and restored from keypad, backup set 1 (in the drive), and backup set 2 (in the drive).

| Structure | Parameter                  | ID   | Description                                                                                                                                                           |
|-----------|----------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P6.5.1    | Restore Factory<br>Default | 831  | Activation parameter for restoring parameters to the factory settings.<br>NOTE: Does not reset: Time (P5.5.2), Date (P5.5.3), Year (P5.5.4), Daylight Saving (P5.5.5) |
| P6.5.2    | Save to Keypad             | 2487 | Initiates a copy of the active set of parameters to the keypad's storage location.                                                                                    |
| P6.5.3    | Restore from Keypad        | 2488 | Initiates a copy of the keypad's storage location to the active set of parameters.                                                                                    |
| P6.5.4    | Save to Set 1              | 2489 | Initiates a copy of the active set of parameters to the drives set 1 storage location.                                                                                |
| P6.5.5    | Restore from Set 1         | 2490 | Initiates a copy of the drives set 1 storage location to the active set of parameters.                                                                                |
| P6.5.6    | Save to Set 2              | 2491 | Initiates a copy of the active set of parameters to the drives set 2 storage location.                                                                                |
| P6.5.7    | Restore from Set 2         | 2492 | Initiates a copy of the drives set 2 storage location to the active set of parameters.                                                                                |

#### Table 135: Parameter Backup.

## Parameter Compare (M6.6)

The keypad can be used to compare the drive's active set of parameters to default values, stored sets on the drive, and the stored set on the keypad. See the *Parameter Backup (6.5)* section for details on how to back up and restore using these sets.

| Structure | Parameter            | ID   | Description                                                                                                                                    |
|-----------|----------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------|
| P6.6.1    | Active Set-Set 1     | 2493 | Initiates a compare of the drive's active parameter set to the saved set 1. All parameters that are different are displayed, with values.      |
| P6.6.2    | Active Set-Set 2     | 2494 | Initiates a compare of the drive's active parameter set to the saved set 2. All parameters that are different are displayed, with values.      |
| P6.6.3    | Active Set-Defaults  | 2495 | Initiates a compare of the drive's active parameter set to the default values. All parameters that are different are displayed, with values.   |
| P6.6.4    | Active Set-Keypad Se | 2496 | Initiates a compare of the drive's active parameter set to the keypad saved set. All parameters that are different are displayed, with values. |

Table 136: Parameter Compare (M6.6).

# Favorites (M7)

Favorites are typically used to collect a set of commonly referred to sets of parameters or monitoring signals from any of the keypad menus. Items can be added to the **Favorites** folder by selecting the **Add To Favorites** option. To remove an item from the **Favorites** menu, select the item in the **Favorites** menu, and then select the **Rem from Favorites** option.

# User Levels (M8)

User level parameters are intended to restrict the visibility of parameters and prevent the unauthorized and inadvertent parameterization on the keypad.

To lock the keypad from unauthorized changes, complete the following steps:

1. Set Access Code (P8.2) to a value other than 0.



#### NOTE:

Store this access code in a safe place. If the code is lost, the only method to recover is to reload firmware and re-commission the drive.

#### 2. Set User Level (P8.1) to a value of Monitoring.

When in the monitoring user level, only the Monitor (M2), Favorites (M7), and User Levels (M8) menu options are available through the keypad.

To switch back to Normal mode, complete the following steps:

- 1. Set User Level (P8.1) to a value of Normal.
- 2. When prompted for Access Code (P8.2), enter the value previously entered when locking the key-pad.

Table 137: User Level Settings.

| Structure | Parameter   | Unit | Min    | Max        | Default | ID   | Description                                                                                                                                                                                          |
|-----------|-------------|------|--------|------------|---------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P8.1      | User Level  |      | Normal | Monitoring | Normal  | 1194 | Defines the user level mode of the<br>keypad.<br>0 = Normal = All menus are<br>available.<br>1 = Monitoring = Only the Monitor<br>(M2), Favorites (M7), and User<br>Levels (M8) menus are available. |
| P8.2      | Access Code |      | 0      | 99999      | 0       | 2362 | Defines the access code to be used when switching <b>User Level</b> (P8.1).                                                                                                                          |

# Chapter 5 - Fault Tracing

When the drive control diagnostics detect an unusual operating condition, the drive initiates a visible notification on the keypad. The keypad displays the code, the name and a short description of the fault or alarm.

Notifications vary in consequence and required action. *Faults* make the drive stop and require a reset of the drive. *Alarms* inform of unusual operating conditions, but the drive will continue to run. *Infos* may require resetting but do not affect the drive's operation.

For some faults, you can program different responses in the application. See the parameter group Protections.

The fault can be reset with the **Reset** button on the control keypad or via the I/O terminal. The faults are stored in the **Fault history** menu which can be browsed. Fault codes are outlined in the following table.



NOTE:

For a fault condition, contact Technical Support.

Always write down all texts and codes on the keypad display and a description of the problem together with the Drive Info file.

# Fault Displays

When a fault displays and the drive stops, examine the cause of the fault, perform the actions advised here and reset the fault as instructed below.

- · Press the Reset button on the keypad for one second, or
- Select the **Diagnostics** Menu (M4), select **Reset Faults** (P4.2) and select **Reset Faults** parameter.



# Fault history

In menu M4.3, Fault history, you find the maximum number of 40 occurred faults. On each fault in the memory, you will also find additional information. See the following figure.

Fault Codes



# Fault Codes

| Fault<br>Code | Fault ID                             | Fault Name                       | Possible Cause                                                                                                                           | Remedy                                                                                                                                                                                 |
|---------------|--------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1             | 1                                    | Over-current<br>(hardware fault) | The drive has detected too high a current (>4*I <sub>H</sub> ) in the motor cable:                                                       | Check loading.<br>Check motor.                                                                                                                                                         |
|               | 2                                    | Over-current<br>(software fault) | <ul><li>sudden heavy load increase</li><li>short circuit in motor cables</li><li>unsuitable motor</li></ul>                              | Check cables and connections.<br>Make identification run.<br>Check ramp times.                                                                                                         |
| 2             | 10                                   | Over-voltage<br>(hardware fault) | The DC-link voltage has exceeded the limits defined.                                                                                     | Make deceleration time longer.<br>Activate overvoltage controller.                                                                                                                     |
|               | 11                                   | Over-voltage<br>(software fault) | <ul> <li>too short a deceleration time</li> <li>high over-voltage spikes in supply</li> <li>Start/Stop sequence too fast</li> </ul>      | Check input voltage.                                                                                                                                                                   |
| 3             | 3 20 Earth fault<br>(hardware fault) |                                  | Current measurement has detected that the sum of motor phase current is not zero.                                                        | Check motor cables and motor.                                                                                                                                                          |
|               | 21                                   | Earth fault<br>(software fault)  | <ul> <li>insulation failure in cables or motor</li> </ul>                                                                                |                                                                                                                                                                                        |
| 5             | 40                                   | Charging switch                  | <ul><li>The charging switch is open, when the START command has been given.</li><li>faulty operation</li><li>component failure</li></ul> | Reset the fault and restart.<br>Should the fault re-occur, contact the<br>distributor near to you.                                                                                     |
| 7             | 60                                   | Saturation                       | <ul> <li>Various causes:</li> <li>Defective component</li> <li>Brake resistor short-circuit or overload</li> </ul>                       | Cannot be reset from keypad.<br>Switch off power.<br>DO NOT RECONNECT POWER!<br>Contact the factory.<br>If this fault appears simultaneously with F1,<br>check motor cables and motor. |

| Fault<br>Code | Fault ID | Fault Name                              | Possible Cause                                                                                                                                                                                                                                     | Remedy                                                                                                                                                      |
|---------------|----------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8             | 600      | System fault                            | Communication between control board and power unit has failed.                                                                                                                                                                                     | Reset the fault and restart.<br>Should the fault re-occur, contact your                                                                                     |
|               | 602      |                                         | Watchdog has reset the CPU.                                                                                                                                                                                                                        | distributor.                                                                                                                                                |
|               | 603      |                                         | Voltage of auxiliary power in power unit is too low.                                                                                                                                                                                               |                                                                                                                                                             |
|               | 604      |                                         | Phase fault: Voltage of an output phase does not follow the reference.                                                                                                                                                                             |                                                                                                                                                             |
|               | 605      |                                         | CPLD has faulted but there is no detailed information about the fault.                                                                                                                                                                             |                                                                                                                                                             |
|               | 606      |                                         | Control and power unit software are incompatible.                                                                                                                                                                                                  | Update software. Should the fault re-occur, contact your distributor.                                                                                       |
|               | 607      |                                         | Software version cannot be read. There is no software in the power unit.                                                                                                                                                                           | Update power unit software. Should the fault re-occur, contact your distributor.                                                                            |
|               | 608      |                                         | CPU overload. Part of the software (for example,<br>the application) has caused an overload situation.<br>The source of the fault has been suspended.                                                                                              | Reset the fault and restart.<br>Should the fault re-occur, contact your<br>distributor.                                                                     |
|               | 609      |                                         | Memory access has failed. For example, retain variables could not be restored.                                                                                                                                                                     |                                                                                                                                                             |
|               | 610      |                                         | Necessary device properties cannot be read.                                                                                                                                                                                                        |                                                                                                                                                             |
|               | 647      |                                         | Software error.                                                                                                                                                                                                                                    | Update the software. Should the fault re-                                                                                                                   |
|               | 648      |                                         | Invalid function block used in application. System software and application are not compatible.                                                                                                                                                    | occur, contact your distributor.                                                                                                                            |
|               | 649      |                                         | Resource overload.<br>Error when loading parameter initial<br>values.<br>Error when restoring parameters.<br>Error when saving parameters.                                                                                                         |                                                                                                                                                             |
| 9             | 80       | Undervoltage (fault)                    | DC-link voltage is under the voltage limits defined.                                                                                                                                                                                               | In case of temporary supply voltage break                                                                                                                   |
|               | 81       | Undervoltage (alarm)                    | <ul> <li>Most probable cause: too low a supply voltage</li> <li>AC drive internal fault</li> <li>Defect input fuse</li> <li>External charge switch not closed</li> <li>NOTE: This fault is activated only if the drive is in Run state.</li> </ul> | reset the fault and restart the AC drive.<br>Check the supply voltage. If it is adequate, an<br>internal failure has occurred. Contact your<br>distributor. |
| 10            | 91       | Input phase                             | Input line phase is missing.                                                                                                                                                                                                                       | Check supply voltage, fuses and cable.                                                                                                                      |
| 11            | 100      | Output phase supervision                | Current measurement has detected that there is no current in one motor phase.                                                                                                                                                                      | Check motor cable and motor.                                                                                                                                |
| 13            | 120      | AC drive<br>undertemperature<br>(fault) | Too low temperature measured in power unit's heatsink or board.<br>Heatsink temperature is under -10°C (14°F).                                                                                                                                     |                                                                                                                                                             |
|               | 121      | AC drive<br>undertemperature<br>(alarm) |                                                                                                                                                                                                                                                    |                                                                                                                                                             |

Fault Codes

| Fault<br>Code | Fault ID                                                                                                                                                                                                                                                                                                                                                              | Fault Name                                       | Possible Cause                                                                                                                                                                                                                         | Remedy                                                                                                     |  |  |  |  |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 14            | 130                                                                                                                                                                                                                                                                                                                                                                   | AC drive<br>overtemperature (fault,<br>heatsink) | Too high temperature measured in power unit's heatsink or board.                                                                                                                                                                       | Check the correct amount and flow of cooling<br>air.                                                       |  |  |  |  |
|               | 131                                                                                                                                                                                                                                                                                                                                                                   | AC drive<br>overtemperature<br>(alarm, heatsink) |                                                                                                                                                                                                                                        | Check the ambient temperature.<br>Make sure that the switching<br>frequency is not too high in relation to |  |  |  |  |
|               | 132                                                                                                                                                                                                                                                                                                                                                                   | AC drive<br>overtemperature (fault,<br>board)    |                                                                                                                                                                                                                                        | ambient temperature and motor load.                                                                        |  |  |  |  |
|               | 133                                                                                                                                                                                                                                                                                                                                                                   | AC drive<br>overtemperature<br>(alarm, board)    |                                                                                                                                                                                                                                        |                                                                                                            |  |  |  |  |
| 15            | 140                                                                                                                                                                                                                                                                                                                                                                   | Motor stalled                                    | Motor is stalled.                                                                                                                                                                                                                      | Check motor and load.                                                                                      |  |  |  |  |
| 16            | 150                                                                                                                                                                                                                                                                                                                                                                   | Motor overtemperature                            | Motor is overloaded.                                                                                                                                                                                                                   | Decrease motor load.<br>If no motor overload exists, check the<br>temperature model parameters.            |  |  |  |  |
| 17            | 160                                                                                                                                                                                                                                                                                                                                                                   | Motor underload                                  | Motor is underloaded.                                                                                                                                                                                                                  | Check load.                                                                                                |  |  |  |  |
| 19            | 180                                                                                                                                                                                                                                                                                                                                                                   | Power overload (short-<br>time<br>supervision)   | Drive power is too high.                                                                                                                                                                                                               | Decrease load.                                                                                             |  |  |  |  |
|               | 181                                                                                                                                                                                                                                                                                                                                                                   | Power overload (long-<br>time<br>supervision)    |                                                                                                                                                                                                                                        |                                                                                                            |  |  |  |  |
| 25            |                                                                                                                                                                                                                                                                                                                                                                       | Motor control fault                              | Start angle identification has failed.<br>Generic motor control fault.                                                                                                                                                                 |                                                                                                            |  |  |  |  |
| 26            | 250                                                                                                                                                                                                                                                                                                                                                                   | Start-up Prevent                                 | It is not possible to do a startup of the drive.<br>When the Run request is ON, new software<br>(firmware or an application), a parameter setting,<br>or other file that affects the operation of the drive<br>is loaded to the drive. | Reset the fault and stop the drive. Load the software and start the drive.                                 |  |  |  |  |
| 30            | 500                                                                                                                                                                                                                                                                                                                                                                   | Safety Configuration                             | Appears when safety configuration switch has been installed.                                                                                                                                                                           | Remove the safety configuration switch from the control board.                                             |  |  |  |  |
|               | 501                                                                                                                                                                                                                                                                                                                                                                   | Safety Configuration                             | Too many STO option boards have been detected in the drive, only one is supported.                                                                                                                                                     | Remove the extra STO option boards.                                                                        |  |  |  |  |
|               | 502                                                                                                                                                                                                                                                                                                                                                                   | Safety Configuration                             | STO option board has been installed in incorrect slot.                                                                                                                                                                                 | Place the STO option board in the correct slot.                                                            |  |  |  |  |
|               | 503                                                                                                                                                                                                                                                                                                                                                                   | Safety Configuration                             | Safety configuration switch is missing from the control board.                                                                                                                                                                         | Install the safety configuration switch on the control board.                                              |  |  |  |  |
|               | 504                                                                                                                                                                                                                                                                                                                                                                   | Safety Configuration                             | Safety configuration switch has been installed incorrectly on the control board.                                                                                                                                                       | Install the safety configuration switch in<br>correct place on the control board.                          |  |  |  |  |
|               | 505                                                                                                                                                                                                                                                                                                                                                                   | Safety Configuration                             | Safety configuration switch on the STO option board has been installed incorrectly.                                                                                                                                                    | Check the safety configuration switch installation on the STO option board.                                |  |  |  |  |
|               | 506                                                                                                                                                                                                                                                                                                                                                                   | Safety Configuration                             | Communication with the STO option board has been lost.                                                                                                                                                                                 | Check the installation on the STO option board.                                                            |  |  |  |  |
|               | 507                                                                                                                                                                                                                                                                                                                                                                   | Safety Configuration                             | Hardware does not support STO option board                                                                                                                                                                                             | Reset the drive and restart. If the fault reoccurs, contact Technical Support.                             |  |  |  |  |
|               | When the RS-485 wiring is physically located too close to the input power and/or motor output wiring, this fault can occur.<br>When the RS-485 wiring is not properly grounded per <i>Siemens BT300 HVAC Drive Installation Instructions</i> (DPD01148), this fault can occur.<br>When the STO jumper is not installed in the correct position, this fault can occur. |                                                  |                                                                                                                                                                                                                                        |                                                                                                            |  |  |  |  |

| Fault<br>Code | Fault ID     | Fault Name                         | Possible Cause                                                                                                                                                                           | Remedy                                                                                                                                                                                                                                                                                       |
|---------------|--------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 32            | 312          | Fan cooling                        | Fan life time is up.                                                                                                                                                                     | Change fan and reset fan life time counter.                                                                                                                                                                                                                                                  |
| 33            |              | Fire mode enabled                  | Fire mode of the drive is enabled. The drive's protections are not in use.                                                                                                               |                                                                                                                                                                                                                                                                                              |
| 37            | 360          | Device changed<br>(same type)      | Option board changed for one previously inserted<br>in the same slot. The board's parameter settings<br>are saved.                                                                       | Device is ready for use. Old parameter settings will be used.                                                                                                                                                                                                                                |
| 38            | 370          | Device changed<br>(same type)      | Option board added. The option board was<br>previously inserted in the same slot. The board's<br>parameter settings are saved.                                                           | Device is ready for use. Old parameter settings will be used.                                                                                                                                                                                                                                |
| 39            | 380          | Device removed                     | Option board removed from slot.                                                                                                                                                          | Device no longer available.                                                                                                                                                                                                                                                                  |
| 40            | 390          | Device unknown                     | Unknown device connected (power unit/option board).                                                                                                                                      | Device no longer available.                                                                                                                                                                                                                                                                  |
| 41            | 400          | IGBT temperature                   | IGBT temperature (unit temperature + $I_2T$ ) is too high.                                                                                                                               | Check loading.<br>Check motor size.<br>Make identification run.                                                                                                                                                                                                                              |
| 43            | 420          | Encoder fault                      | Encoder 1 channel A is missing.                                                                                                                                                          | Check encoder connections.                                                                                                                                                                                                                                                                   |
|               | 421          |                                    | Encoder 1 channel B is missing.                                                                                                                                                          | Check encoder and encoder cable.                                                                                                                                                                                                                                                             |
|               | 422          |                                    | Both encoder 1 channels are missing.                                                                                                                                                     | Check encoder board.                                                                                                                                                                                                                                                                         |
|               | 423          |                                    | Encoder reversed.                                                                                                                                                                        |                                                                                                                                                                                                                                                                                              |
|               | 424          |                                    | Encoder board missing                                                                                                                                                                    |                                                                                                                                                                                                                                                                                              |
| 44            | 430          | Device changed<br>(different type) | Option board changed for one not present in the same slot before. No parameter settings are saved.                                                                                       | Reet the option board parameters.                                                                                                                                                                                                                                                            |
| 45            | 440          | Device changed<br>(different type) | Option board added. The option board was not<br>previously present in the same slot. No parameter<br>settings are saved.                                                                 | Reset the option board parameters.                                                                                                                                                                                                                                                           |
| 50            | 1050         | AI Low Fault                       | One or more of the available analog input signals<br>is below 50% of the minimum signal range.<br>A control cable is defective or loose.<br>There is a malfunction in the signal source. | Verify I/O A Ctrl Ref (P3.3.3) for proper<br>selection of analog input.<br>Verify the Al1 Signal Range (P3.5.2.3) or Al2<br>Signal Range (P3.5.2.9). Replace the<br>defective parts.<br>Verify the analog input signal.<br>Verify the analog input signal ranges are<br>properly programmed. |
| 51            | 1051         | External fault                     | Digital input.                                                                                                                                                                           |                                                                                                                                                                                                                                                                                              |
| 52            | 1052<br>1352 | Keypad<br>communication fault      | The connection between the control keypad and variable frequency drive is broken.                                                                                                        | Check keypad connection and possible keypad cable                                                                                                                                                                                                                                            |
| 53            | 1053         | Fieldbus communication fault       | The data connection between the fieldbus master and fieldbus board is broken.                                                                                                            | Check installation and fieldbus master.                                                                                                                                                                                                                                                      |
| 54            | 1354         | Slot A fault                       | Defective option board or slot.                                                                                                                                                          | Check board and slot.                                                                                                                                                                                                                                                                        |
|               | 1454         | Slot B fault                       | 1                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                              |
|               | 1554         | Slot C fault                       | 1                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                              |
|               | 1654         | Slot D fault                       | 1                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                              |
|               | 1754         | Slot E fault                       | 1                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                              |
| 65            | 1065         | PC communication fault             | The data connection between the computer and variable frequency drive is broken.                                                                                                         |                                                                                                                                                                                                                                                                                              |

| 66  | 1066 | Thermistor fault                       | The thermistor input has detected an increase of motor temperature.                                                  | Check motor cooling and load.<br>Check thermistor connection<br>(If thermistor input is not in use it must be<br>short circuited)                             |
|-----|------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 69  | 1310 | Fieldbus<br>mapping error              | Non-existing ID number is used for mapping values to Fieldbus Process Data Out.                                      | Check parameters in Fieldbus Data Mapping menu.                                                                                                               |
|     | 1311 |                                        | Not possible to convert one or more values for Fieldbus Process Data Out.                                            | The value being mapped may be of an<br>undefined type. Check parameters in the<br>Fieldbus Data Mapping menu.                                                 |
|     | 1312 |                                        | Overflow when mapping and converting values for Fieldbus Process Data Out (16-bit).                                  |                                                                                                                                                               |
| 80  | 1080 | Remote Safety 1*                       | Digital input                                                                                                        | Verify the status of the digital input as defined by <b>Remote Safety 1</b> (P3.5.1.44).                                                                      |
|     | 1180 | Remote Safety 2*                       |                                                                                                                      | Verify the status of the digital input as defined by <b>Remote Safety 2</b> (P3.5.1.45).                                                                      |
|     | 1280 | Remote Safety 3*                       |                                                                                                                      | Verify the status of the digital input as defined by <b>Remote Safety 3</b> (P3.5.1.46).                                                                      |
|     | 1380 | Remote Safety 4*                       |                                                                                                                      | Verify the status of the digital input as defined by <b>Remote Safety 4</b> (P3.5.1.47).                                                                      |
|     | 1480 | Remote Safety 5*                       |                                                                                                                      | Verify the status of the digital input as defined by <b>Remote Safety 5</b> (P3.5.1.48).                                                                      |
|     | 1580 | Remote Safety 6*                       |                                                                                                                      | Verify the status of the digital input as defined by <b>Remote Safety 6</b> (P3.5.1.49).                                                                      |
|     | 1680 | Remote Safety 7*                       |                                                                                                                      | Verify the status of the digital input as defined by <b>Remote Safety 7</b> (P3.5.1.50).                                                                      |
|     | 1780 | Remote Safety 8*                       |                                                                                                                      | Verify the status of the digital input as defined by <b>Remote Safety 8</b> (P3.5.1.51).                                                                      |
| 81  | 1081 | Overload**                             | Overload Relay has triggered the fault.                                                                              | Reset the overload relay in the bypass cabinet.                                                                                                               |
| 82  | 1082 | Bypass Not Possible*                   | OPT-B5 relay board is missing. Bypass is not possible without the relay board.                                       | Verify connection of the OPT-B5 option board<br>in Slot C, D, or E. Install if required when<br>power is not applied to the drive.                            |
| 83  | 1083 | Essential Services*                    | Essential Services activated through digital input.                                                                  | Verify the status of the digital input as defined<br>by <b>Essential Services</b> (P3.5.1.52). Verify the<br>status of the <b>EssentServEnable</b> (P3.18.5). |
| 84  | 1084 | Run Interlock Proof                    | The run interlock proof hass failed to be provided within the time allotted in Run <b>Interlock Proof</b> (P3.2.13). | Verify proper operation of the proof feedback source.                                                                                                         |
| 101 | 1101 | Process<br>supervision fault<br>(PID1) | PID controller: Feedback value outside of supervision limits (and the delay if set).                                 |                                                                                                                                                               |
| 105 | 1105 | Process<br>supervision fault<br>(PID2) | PID controller: Feedback value outside of supervision limits (and delay, if set).                                    |                                                                                                                                                               |

\* Faults only possible with an Electronic Bypass Option.

\*\* Faults only possible with a Bypass Option.

# **Chapter 6 - Technical Information**

This chapter provides general technical information for the BT300 Variable Frequency Drive.

| Product Numbers                                                        |                        |            |    |   |   |   |   |   |   |   |   |          |
|------------------------------------------------------------------------|------------------------|------------|----|---|---|---|---|---|---|---|---|----------|
|                                                                        | Example:               | BT300      | -  | 0 | 0 | 1 | X | 2 | - | 0 | 1 | X        |
|                                                                        | Example:               | B1300      | -  | 0 | 0 | 1 | 5 | 4 | - | 1 | 2 | <u>D</u> |
| Model(s)                                                               |                        |            |    |   |   |   |   |   |   |   |   |          |
| BT300                                                                  | VFD Only               |            |    |   |   |   |   |   |   |   |   |          |
| Separator                                                              |                        |            |    |   |   |   |   |   |   |   |   |          |
| HP                                                                     |                        |            |    |   |   |   |   |   |   |   |   |          |
| 1 <sup>1)</sup> , 1.5 <sup>2)</sup> , 2 <sup>2)</sup> , 3, 5, 7.5, 10, |                        |            |    |   |   |   |   |   |   |   |   |          |
| 15, 20, 25, 30, 40, 50, 60,                                            |                        |            |    |   |   |   |   |   |   |   |   |          |
| $75^{3}, 100^{3}, 125^{3}, 150^{4},$                                   |                        |            |    |   |   |   |   |   |   |   |   |          |
| 200 <sup>4</sup> <sup>3</sup> , 250 <sup>3</sup>                       |                        |            |    |   |   |   |   |   |   |   |   |          |
| X = no fraction, 5 = 1/2 hp                                            |                        |            |    |   |   |   |   |   |   |   |   |          |
| Voltage                                                                |                        |            |    |   |   |   |   |   |   |   |   |          |
| 2                                                                      | 208 Vac to             | 240 Vac    |    |   |   |   |   |   |   |   |   |          |
| 4                                                                      | 380 Vac to             | 500 Vac    |    |   |   |   |   |   |   |   |   |          |
| 6                                                                      | 525 Vac to             | 600 Vac    |    |   |   |   |   |   |   |   |   |          |
| Separator                                                              |                        |            |    |   |   |   |   |   |   |   |   |          |
| NEMA                                                                   |                        |            |    |   |   |   |   |   |   |   |   |          |
| 00%                                                                    | Chassis Ve             | ersion (IP | 00 | ) |   |   |   |   |   |   |   |          |
| 01                                                                     | 01 NEMA Type 1 (IP 21) |            |    |   |   |   |   |   |   |   |   |          |
| 12 NEMA Type 12 (IP 54)                                                |                        |            |    |   |   |   |   |   |   |   |   |          |
| Туре                                                                   |                        |            |    |   |   |   |   |   |   |   |   |          |
|                                                                        | Drive                  |            |    |   |   |   |   |   |   |   |   |          |
| X                                                                      | X Only                 |            |    |   |   |   |   |   |   |   |   |          |
| D                                                                      | Disconnect             |            |    |   |   |   |   |   |   |   |   |          |

BT0115R2

<sup>1)</sup> Available only with voltage code 2.

<sup>2)</sup> Available only with voltage code 2 or 4.

<sup>3)</sup> Use with voltages equal to or greater than 230 Vac.

<sup>4)</sup> Available only with voltage code 4 or 6.

<sup>5)</sup> Available only with voltage code 4.

<sup>6)</sup> Available only with 50 hp and above @ 208 Vac or 100 hp and above @ 480 Vac (FS8 and FS9).

<sup>7)</sup> Available only with NEMA Type 12 with 30 hp and below @ 240 Vac or 60 hp and below @ 480 Vac or 50 hp and below @ 600 Vac.

#### Example Product Numbers:

#### BT300-001X2-01X

BT300, 1 hp, 208 to 240 Vac, NEMA Type 1, Drive Only

BT300-00154-12D

BT300, 1.5 hp, 380 to 500 Vac, NEMA Type 12, Drive with disconnect

Figure 37:

# **Power Ratings**

The following chart shows the BT300 HVAC Drive power ratings in accordance with frame sizes:

|      |     |      | Voltage     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |             |             |             |             |                |             |             |
|------|-----|------|-------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|----------------|-------------|-------------|
|      |     |      | 208-<br>240 | 380-<br>500 | 525-<br>600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 208-<br>240 | 380-<br>500 | 525-<br>600 | 208-<br>240 | 380-<br>500 | 525-<br>600 | 208-<br>240    | 380-<br>500 | 525-<br>600 |
| н    | Р   | kW   |             | Frame Siz   | ze                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | In          | put Curr    | ent         | Out         | tput Curre  | ent         | 10% OL Current |             |             |
| 1    | 1   | 0.75 |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.2         |             |             | 4.8         |             |             | 5.3            |             |             |
| 1.   | .5  | 1.1  |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.0         | 3.4         |             | 6.7         | 3.4         |             | 7.4            | 3.7         |             |
| 2    | 2   | 1.5  | -           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.2         | 4.6         |             | 8.0         | 4.8         |             | 8.8            | 5.3         |             |
| 3    | 3   | 2.2  |             | 4           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.7         | 5.4         | 2.7         | 11.0        | 5.6         | 3.9         | 12.1           | 6.2         | 4.3         |
| 5    | 5   | 4    |             |             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.1        | 9.3         | 3.9         | 18.0        | 9.6         | 6.1         | 19.8           | 10.6        | 6.7         |
| 7.   | .5  | 5.5  | 5           |             | <b>J</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21.7        | 11.3        | 6.1         | 24.2        | 12.0        | 9.0         | 26.6           | 13.2        | 9.9         |
| 1(   | 0   | 7.5  |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27.7        | 15.4        | 9.0         | 31.0        | 16.0        | 11.0        | 34.1           | 17.6        | 12.1        |
| 1    | 5   | 11   | 6           | 5           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 43.8        | 21.3        | 13.5        | 48.0        | 23.0        | 18.0        | 52.8           | 25.3        | 19.8        |
| 20   | 0   | 15   | 0           |             | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 57.0        | 28.4        | 18.0        | 62.0        | 31.0        | 22.0        | 68.2           | 34.1        | 24.2        |
| 2    | 5   | 18.5 |             |             | , united and a second s | 69.0        | 36.7        | 22.0        | 75.0        | 38.0        | 27.0        | 82.5           | 41.8        | 29.7        |
| 30   | 0   | 22   | 7           | 6           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 82.1        | 43.6        | 27.0        | 88.0        | 46.0        | 34.0        | 96.8           | 50.6        | 37.4        |
| 40   | 0   | 30   |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 99.0        | 58.2        | 34.0        | 105.0       | 61.0        | 41.0        | 115.5          | 67.1        | 45.1        |
| 50   | 0   | 37   |             |             | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 135.1       | 67.5        | 41.0        | 143.0       | 72.0        | 52.0        | 157.3          | 79.2        | 57.2        |
| 60   | 0   | 45   | 8           | 7           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 162.0       | 85.3        | 52.0        | 170.0       | 87.0        | 62.0        | 187.0          | 95.7        | 68.2        |
| 75   | 5*  | 55   |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200.0       | 100.6       | 62.0        | 208.0       | 105.0       | 80.0        | 228.8          | 115.5       | 88.0        |
| 10   | 0*  | 75   | 0           |             | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 253.0       | 139.4       | 80.0        | 261.0       | 140.0       | 100.0       | 287.1          | 154.0       | 110.0       |
| 12   | 25* | 90   | 9           | 8           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 301.0       | 166.5       | 100.0       | 310.0       | 170.0       | 125.0       | 341.0          | 187.0       | 137.5       |
| 3 15 | 50  | 110  |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 199.6       | 125.0       |             | 205.0       | 144.0       |                | 225.5       | 158.4       |
| 20   | 00  | 132  |             |             | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | 258.0       | 170.0       |             | 261.0       | 208.0       | 1              | 287.1       | 228.8       |
| 25   | 50  | 160  |             | 9           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 303.0       |             |             | 310.0       |             |                | 341.0       |             |

\* For use with 230 Vac and above.

# Interpreting Serial Numbers and Date Codes

Each BT300 HVAC Drive has a manufacturing/serial number. The date code is part of the serial number. The following example shows how to interpret the date code and serial number:

# Serial Numbers

|                        | Example: | С | - | 1 | 3 | 1 | 0 | 0 | 0 | 7 | 4 | 7 |      |
|------------------------|----------|---|---|---|---|---|---|---|---|---|---|---|------|
| Manufacturing Location |          |   |   |   |   |   |   |   |   |   |   |   |      |
| Separator              |          |   |   |   |   |   |   |   |   |   |   |   |      |
| Year                   |          |   |   |   |   |   |   |   |   |   |   |   | 2    |
| Week                   |          |   |   |   |   |   |   |   |   |   |   |   | 112F |
| Sequence Number        |          |   |   |   |   |   |   |   |   |   |   |   | BTO  |

# **Technical Data**

| Table | 139: | Drive | Spec  | ifications |
|-------|------|-------|-------|------------|
| rubic | 107. | DINC  | Spece | neutions   |

| Specification                                           | Description                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Input Voltages and Power Ranges<br>(3-phase)            | 208 to 240 Vac (-10% to +10%):<br>1 hp to 125 hp (0.75 kW to 90 kW)<br>380 to 500 Vac (-10% to +10%):<br>1.5 hp to 250 hp (1.1 kW to 160 kW)<br>525 to 600 Vac (-10% to+10%):<br>3 hp to 200 hp (2.2 kW to 132 kW)                                                                                                                                                                                                           |
| Input Frequency                                         | 45 to 66 Hz (50 to 60 Hz; -5% to +10%)                                                                                                                                                                                                                                                                                                                                                                                       |
| Output Voltage                                          | 0 to Input voltage                                                                                                                                                                                                                                                                                                                                                                                                           |
| Output Frequency                                        | 0 to 320 Hz                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Output Frequency Resolution                             | 0.01 Hz                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Efficiency                                              | >97.5%                                                                                                                                                                                                                                                                                                                                                                                                                       |
| PWM (switching) frequency                               | FS4 to FS6 - 1.5 to 10 kHz<br>Default FS4: 6 kHz; FS5: 4 kHz; FS6 = 4 kHz<br>FS7 to FS9 - 1.5 to 6 kHz<br>Default FS7: 4 kHz; FS8: 3 kHz; FS9: 2kHz<br>Adjustable in .1 kHz increments<br>Automatic switching frequency derating in case of overheating                                                                                                                                                                      |
| Short circuit withstand rating                          | 100,000 AIC                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Frequency Reference<br>Analog Input<br>Keypad           | Resolution 0.01 to 0.1% (10 bit), accuracy ±1%<br>Resolution 0.01 Hz                                                                                                                                                                                                                                                                                                                                                         |
| Field weakening point                                   | 8 to 320 Hz                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Acceleration time                                       | 0.1 to 3000.0 seconds                                                                                                                                                                                                                                                                                                                                                                                                        |
| Deceleration time                                       | 0.1 to 3000.0 seconds                                                                                                                                                                                                                                                                                                                                                                                                        |
| Ambient Operating Temperature                           | 14°F (-10°C) (no frost) to 104°F (40°C)<br>up to 122°F (50°C) with derating                                                                                                                                                                                                                                                                                                                                                  |
| Relative Humidity                                       | 0 to 95% rh, non-condensing, non-corrosive                                                                                                                                                                                                                                                                                                                                                                                   |
| Air quality:<br>Chemical vapors<br>Mechanical particles | IEC 60068-2-60 (H <sub>2</sub> S [hydrogen sulfide] and SO <sub>2</sub> [sulfur dioxide]).<br>IEC 60721-3-3, unit in operation, class 3C2<br>IEC 60721-3-3, unit in operation, class 3S3.                                                                                                                                                                                                                                    |
| Altitude                                                | 100% load capacity (no-derating) up to 3,280 ft (1,000 m)<br>-1% derating for each 328 ft (100 m) above 3,280 ft (1,000 m)<br>Maximum altitude:<br>208 to 240 Vac: 13,123 ft (4,000 m)<br>380 to 500 Vac: 13,123 ft (4,000 m)<br>525 to 600 Vac: 6,562 ft (2,000 m)<br>Voltage for relay outputs:<br>240 Vac: ≤ 9,842 ft (3,000 m)<br>120 Vac: ≤ 13,123 ft (4,000 m)<br>Corner-grounding (380 through 500 Vac systems only): |
|                                                         | ≤ 6,562 ft (2,000 m)                                                                                                                                                                                                                                                                                                                                                                                                         |
| Fixed frequencies                                       | 7 programmable                                                                                                                                                                                                                                                                                                                                                                                                               |
| Skip (prohibited) frequency band                        | 3 programmable                                                                                                                                                                                                                                                                                                                                                                                                               |
| Vibration                                               | EN61800-5-1<br>EN60068-2-6                                                                                                                                                                                                                                                                                                                                                                                                   |

Technical Data

| Specification                                                 | Description                                                                                                                                                         |
|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Seismic                                                       | 2012 International Building Code (IBC), OSHPD                                                                                                                       |
| Shock                                                         | EN61800-5-1<br>EN60068-2-27                                                                                                                                         |
| Enclosure Class                                               | UL Type 1/IP 21 standard in entire HP/kW range.<br>UL Type 12/IP 54 options                                                                                         |
| EMC Immunity                                                  | Fulfills IEC 61800-3 (2004), first and second environment                                                                                                           |
| EMC Emissions                                                 | EN61800-3 (2004) Category C2<br>Can be field modified for IT networks for C3 or C4 ratings.                                                                         |
| Embedded Protocols                                            | RS-485:<br>APOGEE P1, BACnet MS/TP (BTL), Modbus RTU, Metasys N2<br>Ethernet:<br>BACnet IP (BTL), Modbus TCP                                                        |
| Heatsink cooling fan noise level in dB (low speed/high speed) | FS4: 45/56<br>FS5: 57/65<br>FS6: 63/72<br>FS7: 43/73<br>FS8: 58/73<br>FS9: 54/75                                                                                    |
| Heatsink cooling fan output                                   | FS4: 49 CFM<br>FS5: 88 CFM<br>FS6: 219 CFM<br>FS7: 159 CFM<br>FS8: 426 CFM<br>FS9: 560 CFM                                                                          |
| Agency Approvals/Conformity                                   | UL 508C; UL; cUL; CE; BTL ; RoHS compliant; EN61800-5-1 (2007).                                                                                                     |
| Country Of Origin (COO)                                       | United States of America                                                                                                                                            |
| Control Method                                                | Linear, parabolic and programmable V/f; and flux current control low-power mode                                                                                     |
| Control I/O:<br>Analog Inputs                                 | 2 - voltage (0/2 to 10 Vdc) or current (0/4 to 20 mA)<br>Resolution 0.1%; Accuracy $\pm 1\%$                                                                        |
| Analog Outputs                                                | <500 W; Resolution 0.1%; Accuracy ±1%                                                                                                                               |
| Digital Inputs                                                | <ul> <li>a programmable and isloated</li> <li>Positive or Negative logic; 5 kW; 0 to 5 Vdc = 0; 15 to 30 Vdc = 1</li> <li>2 - Form C and 1 Normally Open</li> </ul> |
| Relay Outputs                                                 | 24 Vdc @ 8A; 250 Vac @ 8A; 125 Vac @ 0.4A                                                                                                                           |
| Auxiliary input                                               | 24 Vdc ±10%, 250 mA                                                                                                                                                 |
| Auxiliary output                                              | 10 Vdc ±3%, 10 mA (short-circuit protected)<br>24 Vdc ±10%, 250 mA (short-circuit protected)                                                                        |

Control Board Technical Specifications

| Specification            | Description                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Embedded Protocols       | RS-485:<br>APOGEE P1, BACnet MS/TP, Modbus RTU, Metasys N2<br>Ethernet:<br>BACnet IP, Modbus TCP                                                                                                                                                                                                                                                               |
| Over voltage trip limit  | 208 to 240 Vac: 456 Vdc<br>380 to 500 Vac: 911 Vdc<br>525 to 600 Vac: 1094 Vdc                                                                                                                                                                                                                                                                                 |
| Under voltage trip limit | Depends on supply voltage (0.8775* supply voltage):<br>208 Vac: 182.5 Vdc<br>240 Vac: 210.6 Vdc<br>380 Vac: 333.5 Vdc<br>480 Vac: 421.2 Vdc<br>575 Vac: 504.6 Vdc                                                                                                                                                                                              |
| Protection features      | Under-voltage trip limit<br>Over-voltage trip limit<br>Ground fault protection<br>Input (mains) supervision<br>Motor phase supervision<br>Over-current protection<br>Unit over-temperature protection<br>Motor overload protection<br>Motor stall protection<br>Motor underload protection<br>Short-circuit protection of 10 Vdc and 24 Vdc reference voltages |

# **Control Board Technical Specifications**

Table 140: Control Module Technical Specifications

| Terminal | Signal/Description        | Specification                                         |  |  |  |
|----------|---------------------------|-------------------------------------------------------|--|--|--|
|          | Slot A                    |                                                       |  |  |  |
| 1        | +10 Vdc Reference Output  | +3%; Maximum current 10 mA                            |  |  |  |
| 2        | Analog Input 1 Signal (+) | 0 through 10 Vdc or 0 through 20 mA (selection with   |  |  |  |
| 3        | Analog Input 1 Common (-) | DIP switch)<br>Resolution: 0.1%, Accuracy: ±1%        |  |  |  |
| 4        | Analog Input 2 Signal (+) | 0 through 10 Vdc or 0 through 20 mA (selection with   |  |  |  |
| 5        | Analog Input 2 Common (-) | DIP switch)<br>Resolution: 0.1%, Accuracy: ±1%        |  |  |  |
| 6        | 24 Vdc Output Voltage     | ±10%; Maximum 250 mA                                  |  |  |  |
| 7        | I/O Ground                |                                                       |  |  |  |
| 8        | Digital Input 1           | Positive or negative logic;                           |  |  |  |
| 9        | Digital Input 2           | 0 Vdc - 5 Vdc = <b>0</b> ; 15 Vdc - 30 Vdc = <b>1</b> |  |  |  |
| 10       | Digital Input 3           |                                                       |  |  |  |
| 11       | Common for DI 1 - DI 6    |                                                       |  |  |  |
| 12       | 24 Vdc Output Voltage     | ±10%; Maximum 250 mA                                  |  |  |  |
| 13       | I/O Ground                |                                                       |  |  |  |
| 14       | Digital Input 4           | Positive or negative logic;                           |  |  |  |
| 15       | Digital Input 5           | 0 Vdc - 5 Vdc = <b>0</b> ; 15 Vdc - 30 Vdc = <b>1</b> |  |  |  |
| 16       | Digital Input 6           |                                                       |  |  |  |

Fieldbus Technical Data

| Terminal | Signal/Description             | Specification                                                |  |  |
|----------|--------------------------------|--------------------------------------------------------------|--|--|
| 17       | Common for DI 1 - DI 6         |                                                              |  |  |
| 18       | Analog Output 1 Signal (+)     | 0 through 10 Vdc or 0 through 20 mA (selection with          |  |  |
| 19       | Analog Output 1 Common (-)     | DIP switch)<br>Resolution: 0.1%, Accuracy: ±1%               |  |  |
| 30       | 24 Vdc Input Voltage           | ±10%; Maximum 250 mA; Used for power backup of control unit. |  |  |
| А        | RS-485 -                       | Fieldbus Negative                                            |  |  |
| В        | RS-485 +                       | Fieldbus Positive                                            |  |  |
|          | Slot B                         |                                                              |  |  |
| 21       | Relay Output 1 Normally Closed | Switching capacity: 24 Vdc/8A; 250 Vac/8A;                   |  |  |
| 22       | Relay Output 1 Common          | 125 Vdc/0.4A<br>Minimum switch load: 5 Vdc/0 mA              |  |  |
| 23       | Relay Output 1 Normally Open   |                                                              |  |  |
|          |                                |                                                              |  |  |
| 24       | Relay Output 2 Normally Closed | Switching capacity: 24 Vdc/8A; 250 Vac/8A;                   |  |  |
| 25       | Relay Output 2 Common          | 125 Vdc/0.4A<br>Minimum switch load: 5 Vdc/0 mA              |  |  |
| 25       | Relay Output 2 Normally Open   |                                                              |  |  |
|          | ·                              | ·                                                            |  |  |
| 32       | Relay Output 2 Common          | Switching capacity: 24 Vdc/8A; 250 Vac/8A;                   |  |  |
| 33       | Relay Output 2 Normally Open   | T 125 Vdc/0.4A<br>Minimum switch load: 5 Vdc/0 mA            |  |  |

# Fieldbus Technical Data

|                         | APOGEE P1                                                | BACnet MS/TP                 | Modbus RTU                                                                               | Metasys N2         | BACnet IP                    | Modbus TCP |
|-------------------------|----------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------|--------------------|------------------------------|------------|
| Interface               |                                                          | RS-48                        | 100BaseT, 802.3                                                                          | 3                  |                              |            |
| Data Transfer<br>Method | RS-485, half-duplex                                      |                              |                                                                                          | Ethernet half/full | duplex                       |            |
| Transfer Cable          | STP (Shielded Twisted Pair), Belden 9841 type or similar |                              |                                                                                          | CAT5e STP          |                              |            |
| Connector               | 14 AWG (2.5 mm <sup>2</sup> )                            |                              |                                                                                          | Shielded RJ45      |                              |            |
| Baud Rate(s)            | 4800, 9600                                               | 9600, 19200, 38400,<br>76800 | 300, 600, 1200,<br>2400, 4800, 9600,<br>19200, 38400,<br>57600, 76800,<br>115200, 230400 | 9600               | 10/100 Mbits/s, auto-sensing |            |
| Addresses               | 0 to 127                                                 | 0 to 127                     | 1 to 247                                                                                 | 1 to 255           |                              | NA         |

# Accessories and Replacement Parts

| Accessory Description |                                                 | Frame Size         |                    |                    |  |
|-----------------------|-------------------------------------------------|--------------------|--------------------|--------------------|--|
|                       |                                                 | 4                  | 5                  | 6                  |  |
| NEMA 1 to             | NEMA 12 Cover                                   | BT300-CVR-54-FS4   | BT300-CVR-54-FS5   | BT300-CVR-54-FS6   |  |
| NEMA 12<br>Upgrade    | NEMA 12 Gland Plate                             | BT300-EDPLT-54-FS4 | BT300-EDPLT-54-FS5 | BT300-EDPLT-54-FS6 |  |
|                       | Internal Fan<br>(for s/n C1407xxxx and earlier) | BT300-INTFAN-FS4   | BT300-INTFAN-FS5   | BT300-INTFAN-FS6   |  |
|                       | Internal Fan<br>(for s/n C1408xxxx and later)   | BT300-INTFAN-456-F | BT300-INTFAN-456-F | BT300-INTFAN-456-F |  |
|                       | Accessories Kit                                 | BT300-ACCKIT-FS4   | BT300-ACCKIT-FS5   | BT300-ACCKIT-FS6   |  |
| EMC Filter Kit        |                                                 | BT300-EMCKIT-FS4   | BT300-EMCKIT-FS5   | BT300-EMCKIT-FS6   |  |
| Flange Mount Kit      |                                                 | BT300-FLG-FS4      | BT300-FLG-FS5      | BT300-FLG-FS6      |  |
| Main Fan (heatsink)   |                                                 | BT300-MFAN-FS4     | BT300-MFAN-FS5     | BT300-MFAN-FS6     |  |
| NEMA 1 Cover          |                                                 | BT300-CVR-21-FS4   | BT300-CVR-21-FS5   | BT300-CVR-21-FS6   |  |
| NEMA 1 Gland Plate    |                                                 | BT300-EDPLT-N1-FS4 | BT300-EDPLT-N1-FS5 | BT300-EDPLT-N1-FS6 |  |
|                       |                                                 |                    |                    |                    |  |
|                       | Accessory Description                           | Frame Size         |                    |                    |  |
|                       |                                                 | 7                  | 8                  | 8                  |  |
| NEMA 1 to             | NEMA 12 Cover                                   | BT300-CVR-2154-FS7 | BT300-CVR-2154-FS8 | N/A                |  |
| NEMA 12<br>Upgrade    | NEMA 12 Gland Plate                             | N/A                | N/A                | N/A                |  |
|                       | Internal Fan<br>(for s/n C1407xxxx and earlier) | BT300-INTFAN-FS7   | BT300-INTFAN-FS8   | BT300-INTFAN-FS9   |  |
|                       | Internal Fan<br>(for s/n C1408xxxx and later)   |                    |                    |                    |  |
| Accessories Kit       |                                                 | BT300-ACCKIT-FS7   | BT300-ACCKIT-FS8   | BT300-ACCKIT-FS9   |  |
| EMC Filter Kit        |                                                 | BT300-EMCKIT-FS7   | N/A                | N/A                |  |
| Flange Mount Kit      |                                                 | BT300-FLG-FS7      | N/A                | N/A                |  |
| Main Fan (heatsink)   |                                                 | BT300-MFAN-FS7     | BT300-MFAN-FS8     | BT300-MFAN-FS9     |  |
| NEMA 1 Cover          |                                                 | BT300-CVR-2154-FS7 | BT300-CVR-2154-FS8 | N/A                |  |
| NEMA 1 Gland Plate    |                                                 |                    |                    |                    |  |

Table 141: BT300 HVAC Drive Accessories and Replacement Parts (Frame Size-Specific).

#### Table 142: Accessories.

| Part Number      | Description                                                   |
|------------------|---------------------------------------------------------------|
| BT300-BATTERY    | Battery package (5 pcs)                                       |
| BT300-BATTERY-F  | Battery package (5 pcs) for use with s/n 1408xxx and later    |
| BT300-BYP-DEMO   | VFD and Electronic Bypass Demo with carrying case             |
| BT300-CABLE      | USB to RS422 interface cable for computer-to-drive connection |
| BT300-CNTLUNIT   | Control Module                                                |
| BT300-CNTLUNIT-F | Control Module for use with s/n 1408xxx and later             |
| BT300-HHPANEL    | Hand held panel kit with magnetic base                        |
| BT300-KEYPAD     | Graphical keypad                                              |

## Chapter 6 - Technical Information

Accessories and Replacement Parts

| Part Number    | Description                                                                      |
|----------------|----------------------------------------------------------------------------------|
| BT300-OPT-B1-V | Option board with six bi-directional terminals (digital input or digital output) |
| BT300-OPT-B2-V | Option board with one thermistor input and two relay outputs                     |
| BT300-OPT-B4-V | Option board with one analog input and two analog outputs                        |
| BT300-OPT-B5-V | Option board with three relay outputs                                            |
| BT300-OPT-B9-V | Option board with five digital inputs and one relay output                       |
| BT300-OPT-BF-V | Option board with one analog output, one digital output and one relay output     |
| BT300-OPT-BH-V | Option board with three analog inputs (for PT100, PT1000, NI 1000, KTY-84)       |
| BT300-PNL-N12  | NEMA 12 door keypad mounting kit                                                 |



Issued by Siemens Industry, Inc. Building Technologies Division 1000 Deerfield Pkwy Buffalo Grove IL 60089 +1 847-215-1000 © Siemens Industry, Inc., 2017 Technical specifications and availability subject to change without notice.